Suppr超能文献

使用树形结构小波变换对黑色素瘤进行分类。

Classification of melanoma using tree structured wavelet transforms.

作者信息

Patwardhan Sachin V, Dhawan Atam P, Relue Patricia A

机构信息

Department of Electrical and Computer Engineering, New Jersey Institute of Technology, University Heights, 07102, Newark, NJ, USA.

出版信息

Comput Methods Programs Biomed. 2003 Nov;72(3):223-39. doi: 10.1016/s0169-2607(02)00147-5.

Abstract

This paper presents a wavelet transform based tree structure model developed and evaluated for the classification of skin lesion images into melanoma and dysplastic nevus. The tree structure model utilizes a semantic representation of the spatial-frequency information contained in the skin lesion images including textural information. Results show that the presented method is effective in discriminating melanoma from dysplastic nevus. The results are also compared with those obtained using another method of developing tree structures utilizing the maximum channel energy criteria with a fixed energy ratio threshold.

摘要

本文提出了一种基于小波变换的树状结构模型,该模型已开发并经过评估,用于将皮肤病变图像分类为黑色素瘤和发育异常痣。该树状结构模型利用了皮肤病变图像中包含的空间频率信息的语义表示,包括纹理信息。结果表明,所提出的方法在区分黑色素瘤和发育异常痣方面是有效的。还将这些结果与使用另一种利用固定能量比阈值的最大通道能量准则来开发树状结构的方法所获得的结果进行了比较。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验