Razmjooy Navid, Sheykhahmad Fatima Rashid, Ghadimi Noradin
Young Researchers and Elite club, Ardabil Branch, Islamic Azad University, Ardabil, Iran.
Open Med (Wars). 2018 Mar 15;13:9-16. doi: 10.1515/med-2018-0002. eCollection 2018.
One of the most dangerous cancers in humans is Melanoma. However, early detection of melanoma can help us to cure it completely. This paper presents a new efficient method to detect malignancy in melanoma via images. At first, the extra scales are eliminated by using edge detection and smoothing. Afterwards, the proposed method can be utilized to segment the cancer images. Finally, the extra information is eliminated by morphological operations and used to focus on the area which melanoma boundary potentially exists. To do this, World Cup Optimization algorithm is utilized to optimize an MLP neural Networks (ANN). World Cup Optimization algorithm is a new meta-heuristic algorithm which is recently presented and has a good performance in some optimization problems. WCO is a derivative-free, Meta-Heuristic algorithm, mimicking the world's FIFA competitions. World cup Optimization algorithm is a global search algorithm while gradient-based back propagation method is local search. In this proposed algorithm, multi-layer perceptron network (MLP) employs the problem's constraints and WCO algorithm attempts to minimize the root mean square error. Experimental results show that the proposed method can develop the performance of the standard MLP algorithm significantly.
黑色素瘤是人类最危险的癌症之一。然而,早期发现黑色素瘤有助于我们将其完全治愈。本文提出了一种通过图像检测黑色素瘤恶性程度的高效新方法。首先,利用边缘检测和平滑操作消除多余尺度。然后,所提出的方法可用于分割癌症图像。最后,通过形态学操作消除多余信息,并将其用于聚焦黑色素瘤边界可能存在的区域。为此,利用世界杯优化算法对多层感知器神经网络(MLP)进行优化。世界杯优化算法是一种新提出的元启发式算法,在一些优化问题中具有良好性能。WCO是一种无导数的元启发式算法,模仿世界国际足联比赛。世界杯优化算法是一种全局搜索算法,而基于梯度的反向传播方法是局部搜索。在该算法中,多层感知器网络(MLP)采用问题的约束条件,WCO算法试图最小化均方根误差。实验结果表明,所提出的方法能显著提高标准MLP算法的性能。