Suppr超能文献

基于自适应模板匹配的细胞外神经记录自动尖峰检测

Automatic spike detection based on adaptive template matching for extracellular neural recordings.

作者信息

Kim Sunghan, McNames James

机构信息

Biomedical Signal Processing Laboratory, Electrical & Computer Engineering, Portland State University, Portland, OR, USA.

出版信息

J Neurosci Methods. 2007 Sep 30;165(2):165-74. doi: 10.1016/j.jneumeth.2007.05.033. Epub 2007 Jun 7.

Abstract

Recordings of extracellular neural activity are used in many clinical applications and scientific studies. In most cases, these signals are analyzed as a point process, and a spike detection algorithm is required to estimate the times at which action potentials occurred. Recordings from high-density microelectrode arrays (MEAs) and low-impedance microelectrodes often have a low signal-to-noise ratio (SNR<10) and contain action potentials from more than one neuron. We describe a new detection algorithm based on template matching that only requires the user to specify the minimum and maximum firing rates of the neurons. The algorithm iteratively estimates the morphology of the most prominent action potentials. It is able to achieve a sensitivity of >90% with a false positive rate of <5Hz in recordings with an estimated SNR=3, and it performs better than an optimal threshold detector in recordings with an estimated SNR>2.5.

摘要

细胞外神经活动记录被用于许多临床应用和科学研究中。在大多数情况下,这些信号被作为点过程进行分析,并且需要一个尖峰检测算法来估计动作电位发生的时间。来自高密度微电极阵列(MEA)和低阻抗微电极的记录通常具有低信噪比(SNR<10),并且包含来自多个神经元的动作电位。我们描述了一种基于模板匹配的新检测算法,该算法仅要求用户指定神经元的最小和最大放电率。该算法迭代估计最突出动作电位的形态。在估计SNR = 3的记录中,它能够实现> 90%的灵敏度,误报率<5Hz,并且在估计SNR> 2.5的记录中,其性能优于最佳阈值检测器。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验