Kim Sunghan, McNames James
Biomedical Signal Processing Laboratory, Electrical & Computer Engineering, Portland State University, Portland, OR, USA.
J Neurosci Methods. 2007 Sep 30;165(2):165-74. doi: 10.1016/j.jneumeth.2007.05.033. Epub 2007 Jun 7.
Recordings of extracellular neural activity are used in many clinical applications and scientific studies. In most cases, these signals are analyzed as a point process, and a spike detection algorithm is required to estimate the times at which action potentials occurred. Recordings from high-density microelectrode arrays (MEAs) and low-impedance microelectrodes often have a low signal-to-noise ratio (SNR<10) and contain action potentials from more than one neuron. We describe a new detection algorithm based on template matching that only requires the user to specify the minimum and maximum firing rates of the neurons. The algorithm iteratively estimates the morphology of the most prominent action potentials. It is able to achieve a sensitivity of >90% with a false positive rate of <5Hz in recordings with an estimated SNR=3, and it performs better than an optimal threshold detector in recordings with an estimated SNR>2.5.
细胞外神经活动记录被用于许多临床应用和科学研究中。在大多数情况下,这些信号被作为点过程进行分析,并且需要一个尖峰检测算法来估计动作电位发生的时间。来自高密度微电极阵列(MEA)和低阻抗微电极的记录通常具有低信噪比(SNR<10),并且包含来自多个神经元的动作电位。我们描述了一种基于模板匹配的新检测算法,该算法仅要求用户指定神经元的最小和最大放电率。该算法迭代估计最突出动作电位的形态。在估计SNR = 3的记录中,它能够实现> 90%的灵敏度,误报率<5Hz,并且在估计SNR> 2.5的记录中,其性能优于最佳阈值检测器。