Jansen Ronald, Yu Haiyuan, Greenbaum Dov, Kluger Yuval, Krogan Nevan J, Chung Sambath, Emili Andrew, Snyder Michael, Greenblatt Jack F, Gerstein Mark
Department of Molecular Biophysics and Biochemistry, Yale University, 266 Whitney Avenue, Post Office Box 208114, New Haven, CT 06520, USA.
Science. 2003 Oct 17;302(5644):449-53. doi: 10.1126/science.1087361.
We have developed an approach using Bayesian networks to predict protein-protein interactions genome-wide in yeast. Our method naturally weights and combines into reliable predictions genomic features only weakly associated with interaction (e.g., messenger RNAcoexpression, coessentiality, and colocalization). In addition to de novo predictions, it can integrate often noisy, experimental interaction data sets. We observe that at given levels of sensitivity, our predictions are more accurate than the existing high-throughput experimental data sets. We validate our predictions with TAP (tandem affinity purification) tagging experiments. Our analysis, which gives a comprehensive view of yeast interactions, is available at genecensus.org/intint.
我们开发了一种利用贝叶斯网络在全基因组范围内预测酵母中蛋白质-蛋白质相互作用的方法。我们的方法能够自然地权衡并整合那些与相互作用仅有微弱关联的基因组特征(例如信使核糖核酸共表达、共必需性和共定位),从而得出可靠的预测结果。除了从头预测外,它还能整合通常存在噪声的实验性相互作用数据集。我们观察到,在给定的灵敏度水平下,我们的预测比现有的高通量实验数据集更为准确。我们通过串联亲和纯化(TAP)标签实验验证了我们的预测。我们的分析全面展示了酵母中的相互作用,可在genecensus.org/intint上获取。