Jayachandran Gopalakrishnan, Görisch Helmut, Adrian Lorenz
Fachgebiet Technische Biochemie, Institut für Biotechnologie, Technische Universität Berlin, Seestrasse 13, Sekr. GG1, 13353 Berlin, Germany.
Arch Microbiol. 2003 Dec;180(6):411-6. doi: 10.1007/s00203-003-0607-7. Epub 2003 Oct 16.
The chlororespiring anaerobe Dehalococcoides sp. strain CBDB1 used hexachlorobenzene and pentachlorobenzene as electron acceptors in an energy-conserving process with hydrogen as electron donor. Previous attempts to grow Dehalococcoides sp. strain CBDB1 with hexachlorobenzene or pentachlorobenzene as electron acceptors failed if these compounds were provided as solutions in hexadecane. However, Dehalococcoides sp. strain CBDB1 was able to grow with hexachlorobenzene or pentachlorobenzene when added in crystalline form directly to cultures. Growth of Dehalococcoides sp. strain CBDB1 by dehalorespiration resulted in a growth yield ( Y) of 2.1+/-0.24 g protein/mol Cl(-) released with hexachlorobenzene as electron acceptor; with pentachlorobenzene, the growth yield was 2.9+/-0.15 g/mol Cl(-). Hexachlorobenzene was reductively dechlorinated to pentachlorobenzene, which was converted to a mixture of 1,2,3,5- and 1,2,4,5-tetrachlorobenzene. Formation of 1,2,3,4-tetrachlorobenzene was not detected. The final end-products of hexachlorobenzene and pentachlorobenzene dechlorination were 1,3,5-trichlorobenzene, 1,3- and 1,4-dichlorobenzene, which were formed in a ratio of about 3:2:5. As reported previously, Dehalococcoides sp. strain CBDB1 converted 1,2,3,5-tetrachlorobenzene exclusively to 1,3,5-trichlorobenzene, and 1,2,4,5-tetrachlorobenzene exclusively to 1,2,4-trichlorobenzene. The organism therefore catalyzes two different pathways to dechlorinate highly chlorinated benzenes. In the route leading to 1,3,5-trichlorobenzene, only doubly flanked chlorine substituents were removed, while in the route leading to 1,3-and 1,4-dichlorobenzene via 1,2,4-trichlorobenzene singly flanked chlorine substituents were also removed. Reductive dehalogenase activity measurements using whole cells pregrown with different chlorobenzene congeners as electron acceptors indicated that different reductive dehalogenases might be induced by the different electron acceptors. To our knowledge, this is the first report describing reductive dechlorination of hexachlorobenzene and pentachlorobenzene via dehalorespiration by a pure bacterial culture.
进行氯呼吸的厌氧生物脱卤球菌属菌株CBDB1,在以氢气作为电子供体的节能过程中,将六氯苯和五氯苯用作电子受体。以前尝试以十六烷溶液形式提供六氯苯或五氯苯作为电子受体来培养脱卤球菌属菌株CBDB1,但均告失败。然而,当直接以晶体形式添加到培养物中时,脱卤球菌属菌株CBDB1能够利用六氯苯或五氯苯生长。通过脱卤呼吸作用,脱卤球菌属菌株CBDB1以六氯苯作为电子受体时,生长得率(Y)为每摩尔释放的Cl⁻产生2.1±0.24 g蛋白质;以五氯苯作为电子受体时,生长得率为2.9±0.15 g/mol Cl⁻。六氯苯被还原脱氯为五氯苯,五氯苯又被转化为1,2,3,5-和1,2,4,5-四氯苯的混合物。未检测到1,2,3,4-四氯苯的形成。六氯苯和五氯苯脱氯的最终产物是1,3,5-三氯苯、1,3-二氯苯和1,4-二氯苯,其形成比例约为3:2:5。如先前报道,脱卤球菌属菌株CBDB1将1,2,3,5-四氯苯仅转化为1,3,5-三氯苯,将1,2,4,5-四氯苯仅转化为1,2,4-三氯苯。因此,该生物体催化两种不同的途径对高度氯化的苯进行脱氯。在生成1,3,5-三氯苯的途径中,仅去除两侧都有氯取代基的氯原子,而在通过1,2,4-三氯苯生成1,3-二氯苯和1,4-二氯苯的途径中,也会去除仅一侧有氯取代基的氯原子。使用预先以不同氯苯同系物作为电子受体培养的全细胞进行的还原脱卤酶活性测量表明,不同的电子受体可能诱导产生不同的还原脱卤酶。据我们所知,这是第一份描述纯细菌培养物通过脱卤呼吸作用对六氯苯和五氯苯进行还原脱氯的报告。