Suppr超能文献

Proteomic characterization of metabolites, protein adducts, and biliary proteins in rats exposed to 1,1-dichloroethylene or diclofenac.

作者信息

Jones Juliet A, Kaphalia Lata, Treinen-Moslen Mary, Liebler Daniel C

机构信息

Southwest Environmental Health Sciences Center, College of Pharmacy, University of Arizona, Tucson, Arizona, 85721-0207, USA.

出版信息

Chem Res Toxicol. 2003 Oct;16(10):1306-17. doi: 10.1021/tx0340807.

Abstract

A proteome profiling approach was used to compare effects of two toxicants, 1,1-dicloroethylene (DCE) and diclofenac, which covalently adduct hepatic proteins. Bile was examined as a potential source of protein alterations since both toxicants target the hepatic biliary canaliculus. Bile was collected before and after toxicant treatment. Biliary proteins were separated by one-dimensional SDS-PAGE and analyzed by liquid chromatography-tandem mass spectrometry (LC-MS-MS) with data-dependent scanning. Comprehensive analysis of biliary proteins was performed by using SEQUEST and BLAST database searching, in combination with de novo interpretation. Bile not subjected to tryptic digestion was analyzed for DCE metabolites. DCE treatment resulted in a marked increase in the overall number of biliary proteins, whereas few changes in the proteomic profile were apparent in bile after diclofenac treatment. This is consonant with prior observations of more profound effects of DCE on canalicular membrane integrity. LC-MS-MS analyses for DCE metabolites revealed the presence of S-carboxymethyl glutathione, S-(cysteinylacetyl)glutathione, and a product of the intramolecular rearrangement of the DCE metabolite, ClCH(2)COSG, not previously described in vivo. In addition, several S-carboxymethylated proteins were identified in bile from DCE-treated animals. This investigation has produced the first comprehensive baseline characterization of the content of the rat biliary proteome and the first documentation of alterations in the proteome of bile by toxicant treatment. In addition, the results provide direct in vivo evidence for DCE metabolic routes proposed in the formation of covalent adducts.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验