Davidson Valerie J, Ryks Joanne
School of Engineering, University of Guelph, Guelph, Ontario, Canada NIG 2W1.
J Food Prot. 2003 Oct;66(10):1900-10. doi: 10.4315/0362-028x-66.10.1900.
The objective of food safety risk assessment is to quantify levels of risk for consumers as well as to design improved processing, distribution, and preparation systems that reduce exposure to acceptable limits. Monte Carlo simulation tools have been used to deal with the inherent variability in food systems, but these tools require substantial data for estimates of probability distributions. The objective of this study was to evaluate the use of fuzzy values to represent uncertainty. Fuzzy mathematics and Monte Carlo simulations were compared to analyze the propagation of uncertainty through a number of sequential calculations in two different applications: estimation of biological impacts and economic cost in a general framework and survival of Campylobacter jejuni in a sequence of five poultry processing operations. Estimates of the proportion of a population requiring hospitalization were comparable, but using fuzzy values and interval arithmetic resulted in more conservative estimates of mortality and cost, in terms of the intervals of possible values and mean values, compared to Monte Carlo calculations. In the second application, the two approaches predicted the same reduction in mean concentration (-4 log CFU/ ml of rinse), but the limits of the final concentration distribution were wider for the fuzzy estimate (-3.3 to 5.6 log CFU/ml of rinse) compared to the probability estimate (-2.2 to 4.3 log CFU/ml of rinse). Interval arithmetic with fuzzy values considered all possible combinations in calculations and maximum membership grade for each possible result. Consequently, fuzzy results fully included distributions estimated by Monte Carlo simulations but extended to broader limits. When limited data defines probability distributions for all inputs, fuzzy mathematics is a more conservative approach for risk assessment than Monte Carlo simulations.
食品安全风险评估的目的是量化消费者面临的风险水平,并设计出改进的加工、分销和制备系统,将暴露风险降低到可接受的限度。蒙特卡洛模拟工具已被用于处理食品系统中固有的变异性,但这些工具需要大量数据来估计概率分布。本研究的目的是评估使用模糊值来表示不确定性的情况。对模糊数学和蒙特卡洛模拟进行了比较,以分析不确定性在两个不同应用中的一系列连续计算中的传播情况:在一个通用框架中估计生物影响和经济成本,以及在五个家禽加工操作序列中评估空肠弯曲菌的存活情况。需要住院治疗的人群比例估计值相当,但就可能值区间和平均值而言,与蒙特卡洛计算相比,使用模糊值和区间算术得出的死亡率和成本估计更为保守。在第二个应用中,两种方法预测的平均浓度降低幅度相同(冲洗液中降低4个对数CFU/ml),但与概率估计值(冲洗液中-2.2至4.3个对数CFU/ml)相比,模糊估计的最终浓度分布范围更宽(冲洗液中-3.3至5.6个对数CFU/ml)。带有模糊值的区间算术在计算中考虑了所有可能的组合以及每个可能结果的最大隶属度。因此,模糊结果完全包含了蒙特卡洛模拟估计的分布,但范围更广。当有限的数据定义了所有输入的概率分布时,与蒙特卡洛模拟相比,模糊数学是一种更保守的风险评估方法。