Miconnet Nicolas, Cornu Marie, Beaufort Annie, Rosso Laurent, Denis Jean-Baptiste
Agence française de Sécurile Sanitaire des aliments, Microbiologie quantitative et estimation de risques, 94706 Maisons-Alfort, France.
Risk Anal. 2005 Feb;25(1):39-48. doi: 10.1111/j.0272-4332.2005.00565.x.
The uncertainty associated with estimates should be taken into account in quantitative risk assessment. Each input's uncertainty can be characterized through a probabilistic distribution for use under Monte Carlo simulations. In this study, the sampling uncertainty associated with estimating a low proportion on the basis of a small sample size was considered. A common application in microbial risk assessment is the estimation of a prevalence, proportion of contaminated food products, on the basis of few tested units. Three Bayesian approaches (based on beta(0, 0), beta(1/2, 1/2), and beta(l, 1)) and one frequentist approach (based on the frequentist confidence distribution) were compared and evaluated on the basis of simulations. For small samples, we demonstrated some differences between the four tested methods. We concluded that the better method depends on the true proportion of contaminated products, which is by definition unknown in common practice. When no prior information is available, we recommend the beta (1/2, 1/2) prior or the confidence distribution. To illustrate the importance of these differences, the four methods were used in an applied example. We performed two-dimensional Monte Carlo simulations to estimate the proportion of cold smoked salmon packs contaminated by Listeria monocytogenes, one dimension representing within-factory uncertainty, modeled by each of the four studied methods, and the other dimension representing variability between companies.
在定量风险评估中应考虑与估计值相关的不确定性。每个输入的不确定性可以通过概率分布来表征,以便在蒙特卡罗模拟中使用。在本研究中,考虑了基于小样本量估计低比例时的抽样不确定性。微生物风险评估中的一个常见应用是根据少量测试单位估计污染食品产品的流行率或比例。基于模拟对三种贝叶斯方法(基于beta(0, 0)、beta(1/2, 1/2)和beta(1, 1))和一种频率论方法(基于频率论置信分布)进行了比较和评估。对于小样本,我们展示了四种测试方法之间的一些差异。我们得出结论,较好的方法取决于污染产品的真实比例,而在实际操作中,根据定义,该比例是未知的。当没有先验信息可用时,我们推荐使用beta(1/2, 1/2)先验或置信分布。为了说明这些差异的重要性,在一个应用示例中使用了这四种方法。我们进行了二维蒙特卡罗模拟,以估计受单核细胞增生李斯特菌污染的冷熏三文鱼包装的比例,一个维度表示工厂内部的不确定性,由四种研究方法中的每一种进行建模,另一个维度表示公司之间的变异性。