Suppr超能文献

磷脂和胆固醇三元混合物巨型囊泡中液相的分离

Separation of liquid phases in giant vesicles of ternary mixtures of phospholipids and cholesterol.

作者信息

Veatch Sarah L, Keller Sarah L

机构信息

Departments of Chemistry and Physics, University of Washington, Seattle, Washington 98195-1700, USA.

出版信息

Biophys J. 2003 Nov;85(5):3074-83. doi: 10.1016/S0006-3495(03)74726-2.

Abstract

We use fluorescence microscopy to directly observe liquid phases in giant unilamellar vesicles. We find that a long list of ternary mixtures of high melting temperature (saturated) lipids, low melting temperature (usually unsaturated) lipids, and cholesterol produce liquid domains. For one model mixture in particular, DPPC/DOPC/Chol, we have mapped phase boundaries for the full ternary system. For this mixture we observe two coexisting liquid phases over a wide range of lipid composition and temperature, with one phase rich in the unsaturated lipid and the other rich in the saturated lipid and cholesterol. We find a simple relationship between chain melting temperature and miscibility transition temperature that holds for both phosphatidylcholine and sphingomyelin lipids. We experimentally cross miscibility boundaries both by changing temperature and by the depletion of cholesterol with beta-cyclodextrin. Liquid domains in vesicles exhibit interesting behavior: they collide and coalesce, can finger into stripes, and can bulge out of the vesicle. To date, we have not observed macroscopic separation of liquid phases in only binary lipid mixtures.

摘要

我们使用荧光显微镜直接观察巨型单层囊泡中的液相。我们发现,一长串由高熔点(饱和)脂质、低熔点(通常为不饱和)脂质和胆固醇组成的三元混合物会产生液相区域。特别是对于一种模型混合物DPPC/DOPC/Chol,我们绘制了整个三元体系的相界。对于这种混合物,我们在很宽的脂质组成和温度范围内观察到两个共存的液相,一个相富含不饱和脂质,另一个相富含饱和脂质和胆固醇。我们发现链熔化温度和混溶转变温度之间存在一种简单的关系,这种关系适用于磷脂酰胆碱和鞘磷脂。我们通过改变温度以及用β-环糊精消耗胆固醇来实验性地跨越混溶边界。囊泡中的液相区域表现出有趣的行为:它们会碰撞并合并,能形成指状条纹,还能从囊泡中鼓出。迄今为止,我们尚未在仅由二元脂质混合物中观察到液相的宏观分离。

相似文献

1
Separation of liquid phases in giant vesicles of ternary mixtures of phospholipids and cholesterol.
Biophys J. 2003 Nov;85(5):3074-83. doi: 10.1016/S0006-3495(03)74726-2.
2
Miscibility phase diagrams of giant vesicles containing sphingomyelin.
Phys Rev Lett. 2005 Apr 15;94(14):148101. doi: 10.1103/PhysRevLett.94.148101. Epub 2005 Apr 13.
5
Miscibility of ternary mixtures of phospholipids and cholesterol in monolayers, and application to bilayer systems.
Biophys J. 2005 Jan;88(1):269-76. doi: 10.1529/biophysj.104.048439. Epub 2004 Oct 8.
6
Liquid-liquid phase transition temperatures increase when lipid bilayers are supported on glass.
Biochim Biophys Acta Biomembr. 2018 Oct;1860(10):1965-1971. doi: 10.1016/j.bbamem.2018.05.001. Epub 2018 May 10.
7
Probing lipid-cholesterol interactions in DOPC/eSM/Chol and DOPC/DPPC/Chol model lipid rafts with DSC and (13)C solid-state NMR.
Biochim Biophys Acta. 2013 Aug;1828(8):1889-98. doi: 10.1016/j.bbamem.2013.03.028. Epub 2013 Apr 6.
8
Sterol structure determines miscibility versus melting transitions in lipid vesicles.
Biophys J. 2005 Sep;89(3):1760-8. doi: 10.1529/biophysj.104.049635. Epub 2005 Jun 10.

引用本文的文献

2
High-Density Inverted Micellar Intermediates Promote Membrane Fusion of Cationic Liposomes in Drug Delivery.
Langmuir. 2025 Jul 29;41(29):19055-19070. doi: 10.1021/acs.langmuir.5c00659. Epub 2025 Jul 15.
3
Septin higher-order structure on yeast membranes in vitro.
Nat Commun. 2025 May 30;16(1):5055. doi: 10.1038/s41467-025-60344-w.
4
Condensate-membrane interactions shape membranes, tune cytoskeletal assembly, and localize mRNAs.
Curr Opin Cell Biol. 2025 Aug;95:102540. doi: 10.1016/j.ceb.2025.102540. Epub 2025 May 26.
5
Fluorescence phasor analysis: basic principles and biophysical applications.
Biophys Rev. 2025 Mar 7;17(2):395-408. doi: 10.1007/s12551-025-01293-y. eCollection 2025 Apr.
6
Local mapping of the nanoscale viscoelastic properties of fluid membranes by AFM nanorheology.
Nat Commun. 2025 Apr 24;16(1):3842. doi: 10.1038/s41467-025-59260-w.
7
Structural dissection of ergosterol metabolism reveals a pathway optimized for membrane phase separation.
Sci Adv. 2025 Apr 25;11(17):eadu7190. doi: 10.1126/sciadv.adu7190. Epub 2025 Apr 23.
9
The Importance of Bilayer Asymmetry in Biological Membranes: Insights from Model Membranes.
Membranes (Basel). 2025 Mar 3;15(3):79. doi: 10.3390/membranes15030079.
10
Rolling vesicles: From confined rotational flows to surface-enabled motion.
Proc Natl Acad Sci U S A. 2025 Apr;122(13):e2424236122. doi: 10.1073/pnas.2424236122. Epub 2025 Mar 25.

本文引用的文献

1
Imaging coexisting fluid domains in biomembrane models coupling curvature and line tension.
Nature. 2003 Oct 23;425(6960):821-4. doi: 10.1038/nature02013.
2
Sphingomyelin/phosphatidylcholine/cholesterol phase diagram: boundaries and composition of lipid rafts.
Biophys J. 2003 Oct;85(4):2406-16. doi: 10.1016/S0006-3495(03)74664-5.
3
Probing lipid mobility of raft-exhibiting model membranes by fluorescence correlation spectroscopy.
J Biol Chem. 2003 Jul 25;278(30):28109-15. doi: 10.1074/jbc.M302969200. Epub 2003 May 7.
4
Phospholipid/cholesterol model membranes: formation of cholesterol crystallites.
Biochim Biophys Acta. 2003 Mar 10;1610(2):187-97. doi: 10.1016/s0005-2736(03)00017-8.
5
Role of cholesterol in lipid raft formation: lessons from lipid model systems.
Biochim Biophys Acta. 2003 Mar 10;1610(2):174-83. doi: 10.1016/s0005-2736(03)00016-6.
6
Condensed complexes of cholesterol and phospholipids.
Biochim Biophys Acta. 2003 Mar 10;1610(2):159-73. doi: 10.1016/s0005-2736(03)00015-4.
7
Liquid-liquid immiscibility in membranes.
Annu Rev Biophys Biomol Struct. 2003;32:469-92. doi: 10.1146/annurev.biophys.32.110601.141704. Epub 2003 Jan 31.
8
Lipid rafts: bringing order to chaos.
J Lipid Res. 2003 Apr;44(4):655-67. doi: 10.1194/jlr.R200021-JLR200. Epub 2003 Feb 1.
10
The state of lipid rafts: from model membranes to cells.
Annu Rev Biophys Biomol Struct. 2003;32:257-83. doi: 10.1146/annurev.biophys.32.110601.142439. Epub 2003 Jan 16.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验