Suppr超能文献

荧光相量分析:基本原理与生物物理应用

Fluorescence phasor analysis: basic principles and biophysical applications.

作者信息

Recoulat Angelini Alvaro A, Malacrida Leonel, González Flecha F Luis

机构信息

Laboratorio de Biofísica Molecular, Instituto de Química y Fisicoquímica Biológicas, Universidad de Buenos Aires - CONICET, Buenos Aires, Argentina.

Universidad de Buenos Aires - Facultad de Farmacia y Bioquímica, Buenos Aires, Argentina.

出版信息

Biophys Rev. 2025 Mar 7;17(2):395-408. doi: 10.1007/s12551-025-01293-y. eCollection 2025 Apr.

Abstract

Fluorescence is one of the most widely used techniques in biological sciences. Its exceptional sensitivity and versatility make it a tool of first choice for quantitative studies in biophysics. The concept of phasors, originally introduced by Charles Steinmetz in the late nineteenth century for analyzing alternating current circuits, has since found applications across diverse disciplines, including fluorescence spectroscopy. The main idea behind fluorescence phasors was posited by Gregorio Weber in 1981. By analyzing the complementary nature of pulse and phase fluorometry data, he shows that two magnitudes-denoted as G and S-derived from the frequency-domain fluorescence measurements correspond to the real and imaginary parts of the Fourier transform of the fluorescence intensity in the time domain. This review provides a historical perspective on how the concept of phasors originates and how it integrates into fluorescence spectroscopy. We discuss their fundamental algebraic properties, which enable intuitive model-free analysis of fluorescence data despite the complexity of the underlying phenomena. Some applications in molecular biophysics illustrate the power of this approach in studying diverse phenomena, including protein folding, protein interactions, phase transitions in lipid mixtures, and formation of high-order structures in nucleic acids.

摘要

荧光是生物科学中应用最广泛的技术之一。其卓越的灵敏度和多功能性使其成为生物物理定量研究的首选工具。相量的概念最初由查尔斯·斯坦梅茨在19世纪末引入,用于分析交流电路,此后已在包括荧光光谱学在内的多个学科中得到应用。荧光相量背后的主要思想由格雷戈里奥·韦伯在1981年提出。通过分析脉冲和相位荧光测定数据的互补性质,他表明,从频域荧光测量中得出的两个量值——记为G和S——对应于时域中荧光强度傅里叶变换的实部和虚部。本综述提供了一个历史视角,介绍相量概念的起源以及它如何融入荧光光谱学。我们讨论了它们的基本代数性质,尽管潜在现象复杂,但这些性质能够对荧光数据进行直观的无模型分析。分子生物物理学中的一些应用说明了这种方法在研究各种现象方面的强大作用,包括蛋白质折叠、蛋白质相互作用、脂质混合物中的相变以及核酸中高阶结构的形成。

相似文献

1
Fluorescence phasor analysis: basic principles and biophysical applications.荧光相量分析:基本原理与生物物理应用
Biophys Rev. 2025 Mar 7;17(2):395-408. doi: 10.1007/s12551-025-01293-y. eCollection 2025 Apr.

本文引用的文献

4
Navigating the complexities of multi-domain protein folding.探索多域蛋白质折叠的复杂性。
Curr Opin Struct Biol. 2024 Jun;86:102790. doi: 10.1016/j.sbi.2024.102790. Epub 2024 Mar 2.
9
Protein folding problem: enigma, paradox, solution.蛋白质折叠问题:谜团、悖论与解决方案。
Biophys Rev. 2022 Oct 11;14(6):1255-1272. doi: 10.1007/s12551-022-01000-1. eCollection 2022 Dec.
10
G-quadruplex DNA: A Longer Story.G-四链体 DNA:一个更长的故事。
Acc Chem Res. 2022 Nov 15;55(22):3242-3252. doi: 10.1021/acs.accounts.2c00519. Epub 2022 Oct 25.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验