Suppr超能文献

由不饱和与饱和磷脂酰胆碱以及胆固醇的三元混合物组成的模型膜中的脂质动力学与结构域形成

Lipid dynamics and domain formation in model membranes composed of ternary mixtures of unsaturated and saturated phosphatidylcholines and cholesterol.

作者信息

Scherfeld Dag, Kahya Nicoletta, Schwille Petra

机构信息

Experimental Biophysics Group, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany.

出版信息

Biophys J. 2003 Dec;85(6):3758-68. doi: 10.1016/S0006-3495(03)74791-2.

Abstract

In recent years, the implication of sphingomyelin in lipid raft formation has intensified the long sustained interest in this membrane lipid. Accumulating evidences show that cholesterol preferentially interacts with sphingomyelin, conferring specific physicochemical properties to the bilayer membrane. The molecular packing created by cholesterol and sphingomyelin, which presumably is one of the driving forces for lipid raft formation, is known in general to differ from that of cholesterol and phosphatidylcholine membranes. However, in many studies, saturated phosphatidylcholines are still considered as a model for sphingolipids. Here, we investigate the effect of cholesterol on mixtures of dioleoyl-phosphatidylcholine (DOPC) and dipalmitoyl-phosphatidylcholine (DPPC) or distearoyl-phosphatidylcholine (DSPC) and compare it to that on mixtures of DOPC and sphingomyelin analyzed in previous studies. Giant unilamellar vesicles prepared from ternary mixtures of various lipid compositions were imaged by confocal fluorescence microscopy and, within a certain range of sterol content, domain formation was observed. The assignment of distinct lipid phases and the molecular mobility in the membrane bilayer was investigated by fluorescence correlation spectroscopy. Cholesterol was shown to affect lipid dynamics in a similar way for DPPC and DSPC when the two phospholipids were combined with cholesterol in binary mixtures. However, the corresponding ternary mixtures exhibited different spatial lipid organization and dynamics. Finally, evidences of a weaker interaction of cholesterol with saturated phosphatidylcholines than with sphingomyelin (with matched chain length) are discussed.

摘要

近年来,鞘磷脂在脂筏形成中的作用增强了人们对这种膜脂长期以来的兴趣。越来越多的证据表明,胆固醇优先与鞘磷脂相互作用,赋予双层膜特定的物理化学性质。胆固醇和鞘磷脂形成的分子排列,大概是脂筏形成的驱动力之一,一般认为与胆固醇和磷脂酰胆碱膜的排列不同。然而,在许多研究中,饱和磷脂酰胆碱仍被视为鞘脂的模型。在这里,我们研究了胆固醇对二油酰磷脂酰胆碱(DOPC)和二棕榈酰磷脂酰胆碱(DPPC)或二硬脂酰磷脂酰胆碱(DSPC)混合物的影响,并将其与先前研究中分析的DOPC和鞘磷脂混合物的影响进行比较。由各种脂质组成的三元混合物制备的巨型单层囊泡通过共聚焦荧光显微镜成像,并且在一定范围内的甾醇含量下,观察到结构域形成。通过荧光相关光谱研究了膜双层中不同脂质相的归属和分子流动性。当两种磷脂与胆固醇以二元混合物形式结合时,胆固醇对DPPC和DSPC的脂质动力学影响方式相似。然而,相应的三元混合物表现出不同的空间脂质组织和动力学。最后,讨论了胆固醇与饱和磷脂酰胆碱的相互作用比与(链长匹配的)鞘磷脂弱的证据。

相似文献

4
Separation of liquid phases in giant vesicles of ternary mixtures of phospholipids and cholesterol.
Biophys J. 2003 Nov;85(5):3074-83. doi: 10.1016/S0006-3495(03)74726-2.
5
Complexes in ternary cholesterol-phospholipid mixtures.
Biophys J. 2005 Apr;88(4):L23-5. doi: 10.1529/biophysj.104.058834. Epub 2005 Feb 4.
7
Lipid lateral diffusion in bilayers with phosphatidylcholine, sphingomyelin and cholesterol. An NMR study of dynamics and lateral phase separation.
Chem Phys Lipids. 2006 Jun;141(1-2):179-84. doi: 10.1016/j.chemphyslip.2006.02.011. Epub 2006 Mar 20.
10
Miscibility of ternary mixtures of phospholipids and cholesterol in monolayers, and application to bilayer systems.
Biophys J. 2005 Jan;88(1):269-76. doi: 10.1529/biophysj.104.048439. Epub 2004 Oct 8.

引用本文的文献

1
Synthetic control of actin polymerization and symmetry breaking in active protocells.
Sci Adv. 2024 Jun 14;10(24):eadk9731. doi: 10.1126/sciadv.adk9731. Epub 2024 Jun 12.
2
Formation of Giant Unilamellar Vesicles Assisted by Fluorinated Nanoparticles.
Adv Sci (Weinh). 2023 Dec;10(34):e2302461. doi: 10.1002/advs.202302461. Epub 2023 Oct 9.
3
Nanoscale membrane curvature sorts lipid phases and alters lipid diffusion.
Biophys J. 2023 Jun 6;122(11):2203-2215. doi: 10.1016/j.bpj.2023.01.001. Epub 2023 Jan 4.
4
Biocompatible and optically stable hydrophobic fluorescent carbon dots for isolation and imaging of lipid rafts in model membrane.
Anal Bioanal Chem. 2022 Aug;414(20):6055-6067. doi: 10.1007/s00216-022-04165-6. Epub 2022 Jun 14.
5
A vesicle microrheometer for high-throughput viscosity measurements of lipid and polymer membranes.
Biophys J. 2022 Mar 15;121(6):910-918. doi: 10.1016/j.bpj.2022.02.015. Epub 2022 Feb 15.
6
Curvature-driven feedback on aggregation-diffusion of proteins in lipid bilayers.
Soft Matter. 2021 Sep 22;17(36):8373-8386. doi: 10.1039/d1sm00502b.
7
Pitching single-focus confocal data analysis one photon at a time with Bayesian nonparametrics.
Phys Rev X. 2020 Jan-Mar;10(1). doi: 10.1103/physrevx.10.011021. Epub 2020 Jan 30.
8
Bacterial protein listeriolysin O induces nonmonotonic dynamics because of lipid ejection and crowding.
Biophys J. 2021 Aug 3;120(15):3040-3049. doi: 10.1016/j.bpj.2021.06.014. Epub 2021 Jun 30.
9
Building Blocks to Design Liposomal Delivery Systems.
Int J Mol Sci. 2020 Dec 15;21(24):9559. doi: 10.3390/ijms21249559.

本文引用的文献

1
Probing lipid mobility of raft-exhibiting model membranes by fluorescence correlation spectroscopy.
J Biol Chem. 2003 Jul 25;278(30):28109-15. doi: 10.1074/jbc.M302969200. Epub 2003 May 7.
2
Role of cholesterol in lipid raft formation: lessons from lipid model systems.
Biochim Biophys Acta. 2003 Mar 10;1610(2):174-83. doi: 10.1016/s0005-2736(03)00016-6.
3
Liquid-liquid immiscibility in membranes.
Annu Rev Biophys Biomol Struct. 2003;32:469-92. doi: 10.1146/annurev.biophys.32.110601.141704. Epub 2003 Jan 31.
4
Membrane properties of sphingomyelins.
FEBS Lett. 2002 Oct 30;531(1):33-7. doi: 10.1016/s0014-5793(02)03406-3.
5
Fluorescence correlation spectroscopy and its potential for intracellular applications.
Cell Biochem Biophys. 2001;34(3):383-408. doi: 10.1385/CBB:34:3:383.
6
Molecular organization of cholesterol in polyunsaturated membranes: microdomain formation.
Biophys J. 2002 Jan;82(1 Pt 1):285-98. doi: 10.1016/S0006-3495(02)75394-0.
7
Cholesterol interactions with phospholipids in membranes.
Prog Lipid Res. 2002 Jan;41(1):66-97. doi: 10.1016/s0163-7827(01)00020-0.
8
Condensed complexes and the calorimetry of cholesterol-phospholipid bilayers.
Biophys J. 2001 Nov;81(5):2774-85. doi: 10.1016/S0006-3495(01)75920-6.
9
Seeing is believing: visualization of rafts in model membranes.
Proc Natl Acad Sci U S A. 2001 Sep 11;98(19):10517-8. doi: 10.1073/pnas.191386898.
10
Partitioning of Thy-1, GM1, and cross-linked phospholipid analogs into lipid rafts reconstituted in supported model membrane monolayers.
Proc Natl Acad Sci U S A. 2001 Sep 11;98(19):10642-7. doi: 10.1073/pnas.191168698. Epub 2001 Sep 4.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验