Osei E K, Darko J, Mosseri A, Jezioranski J
Princess Margaret Hospital, Department of Radiation Physics, 610 University Avenue, Toronto, Ontario M5G 2M9, Canada.
Med Phys. 2003 Oct;30(10):2706-14. doi: 10.1118/1.1607551.
The dose distribution in small lung tumors (coin lesions) is affected by the combined effects of reduced attenuation of photons and extended range of electrons in lung. The increased range of electrons in low-density tissues can lead to loss of field flatness and increased penumbra width, especially at high energies. The EGSNRC Monte Carlo code, together with DOSXYZNRC, a three-dimensional voxel dose calculation module has been used to study the characteristics of the penumbra in the region of the target-lung interfaces for various radiation beam energies, lung densities, target-field edge distances, target size, and depth. The Monte Carlo model was validated by film measurements made in acrylic (simulating a tumor) imbedded in cork (simulating the lung). Beam profiles that are deemed to be acceptable are defined as those in which no point within the planning target volume (target volume plus 1 cm margin) received less than 95% of the dose prescribed to the center of the target. For parallel opposed beams and 2 cm cube target size, 6 MV photons produce superior dose distribution with respect to penumbra at the lateral, anterior, and posterior surfaces and midplane of the simulated target, with a target-field edge distance of 2.5 cm. A lesser target-field edge distance of 2.0 cm is required for 4 MV photons to produce acceptable dose distribution. To achieve equivalent dose distribution with 10 and 18 MV photons, a target-field edge distance of 3.0 and 3.5 cm, respectaively, is required. For a simulated target size of 4 cm cube, a target-field edge distance of 2, 2.5, and 3 cm is required for 6, 10, and 18 MV photons, respectively, to yield acceptable PTV coverage. The effect, which is predominant in determining the target dose, depends on the beam energy, target-field edge distance, lung density, and the depth and size of the target.
小肺肿瘤(硬币状病灶)中的剂量分布受肺部光子衰减降低和电子射程延长的综合影响。电子在低密度组织中射程的增加会导致射野平坦度丧失和半值层宽度增加,尤其是在高能量时。EGSNRC蒙特卡罗代码与三维体素剂量计算模块DOSXYZNRC一起,被用于研究不同辐射束能量、肺密度、靶区-肺界面距离、靶区大小和深度情况下,靶区-肺界面区域半值层的特征。通过在嵌入软木塞(模拟肺)的丙烯酸树脂(模拟肿瘤)中进行的胶片测量,对蒙特卡罗模型进行了验证。被认为可接受的射野轮廓定义为:计划靶区(靶区加1 cm边界)内任何一点所接受的剂量不低于规定给靶区中心剂量的95%。对于平行相对野和2 cm立方体靶区大小,在模拟靶区的外侧、前侧、后侧表面及中平面上,6 MV光子在半值层方面产生的剂量分布更佳,靶区-射野边缘距离为2.5 cm。4 MV光子要产生可接受的剂量分布,所需的靶区-射野边缘距离较小,为2.0 cm。要使用10 MV和18 MV光子实现等效剂量分布,所需的靶区-射野边缘距离分别为3.0 cm和3.5 cm。对于模拟靶区大小为4 cm立方体的情况,6 MV、10 MV和18 MV光子分别需要2 cm、2.5 cm和3 cm的靶区-射野边缘距离,才能产生可接受的计划靶区覆盖。在确定靶区剂量方面起主要作用的影响因素,取决于束能量、靶区-射野边缘距离、肺密度以及靶区的深度和大小。