Qian Bin, Soyer Orkun S, Neubig Richard R, Goldstein Richard A
Biophysics Research Division, University of Michigan, Ann Arbor, MI 48105, USA.
FEBS Lett. 2003 Nov 6;554(1-2):95-9. doi: 10.1016/s0014-5793(03)01112-8.
Related proteins with similar biological functions generally share common features, allowing us to extract the common sequence features. These common features enable us to build statistical models that can be used to classify proteins, to predict new members, and to study the sequence-function relationship of this protein function group. Although evolution underlies the basis of multiple sequence analysis methods, most methods ignore phylogenetic relationships and the evolutionary process in building these statistical models. Previously we have shown that a phylogenetic tree-based profile hidden Markov model (T-HMM) is superior in generating a profile for a group of similar proteins. In this study we used the method to generate common features of G protein-coupled receptors (GPCRs). The profile generated by T-HMM gives high accuracy in GPCR function classification, both by ligand and by coupled G protein.
具有相似生物学功能的相关蛋白质通常具有共同特征,这使我们能够提取共同的序列特征。这些共同特征使我们能够构建统计模型,用于蛋白质分类、预测新成员以及研究该蛋白质功能组的序列-功能关系。尽管进化是多序列分析方法的基础,但大多数方法在构建这些统计模型时忽略了系统发育关系和进化过程。此前我们已经表明,基于系统发育树的轮廓隐马尔可夫模型(T-HMM)在为一组相似蛋白质生成轮廓方面更具优势。在本研究中,我们使用该方法生成G蛋白偶联受体(GPCR)的共同特征。T-HMM生成的轮廓在GPCR功能分类方面具有很高的准确性,无论是按配体还是按偶联的G蛋白进行分类。