Worsley K J
Department of Mathematics and Statistics, and McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, Québec, Canada.
Stat Methods Med Res. 2003 Oct;12(5):401-18. doi: 10.1191/0962280203sm340ra.
We present a simple approach to the analysis of fMRI data collected from several runs, sessions and subjects. We take advantage of the spatial nature of the data to reduce the noise in certain key parameters, achieving an increase in degrees of freedom for a mixed effects analysis. Our main interest is the analysis of the resulting images of test statistics using the geometry of random fields. We show how the Euler characteristic of the excursion set plays a key role in setting the threshold of the image to detect regions of the brain activated by a stimulus.
我们提出了一种简单的方法来分析从多个运行、会话和受试者收集的功能磁共振成像(fMRI)数据。我们利用数据的空间特性来降低某些关键参数中的噪声,从而在混合效应分析中增加自由度。我们主要关注的是使用随机场几何对检验统计量的结果图像进行分析。我们展示了偏移集的欧拉特征如何在设置图像阈值以检测由刺激激活的脑区中发挥关键作用。