Suppr超能文献

基因必需性决定细菌中的染色体组织。

Gene essentiality determines chromosome organisation in bacteria.

作者信息

Rocha Eduardo P C, Danchin Antoine

机构信息

Unité Génétique des Génomes Bactériens, Institut Pasteur, 28, rue du Dr Roux, 75724 Paris Cedex 15, France.

出版信息

Nucleic Acids Res. 2003 Nov 15;31(22):6570-7. doi: 10.1093/nar/gkg859.

Abstract

In Escherichia coli and Bacillus subtilis, essentiality, not expressivity, drives the distribution of genes between the two replicating strands. Although essential genes tend to be coded in the leading replicating strand, the underlying selective constraints and the evolutionary extent of these findings have still not been subject to comparative studies. Here, we extend our previous analysis to the genomes of low G + C firmicutes and gamma-proteobacteria, and in a second step to all sequenced bacterial genomes. The inference of essentiality by homology allows us to show that essential genes are much more frequent in the leading strand than other genes, even when compared with non- essential highly expressed genes. Smaller biases were found in the genomes of obligatory intracellular bacteria, for which the assignment of essentiality by homology from fast growing free-living bacteria is most problematic. Cross-comparisons used to assess potential errors in the assignment of essentiality by homology revealed that, in most cases, variations in the assignment criteria have little influence on the overall results. Essential genes tend to be more conserved in the leading strand than average genes, which is consistent with selection for this positioning and may impose a strong constraint on chromosomal rearrangements. These results indicate that essentiality plays a fundamental role in the distribution of genes in most bacterial genomes.

摘要

在大肠杆菌和枯草芽孢杆菌中,基因的必需性而非表达性驱动着基因在两条复制链之间的分布。尽管必需基因倾向于在前导复制链中编码,但这些发现背后的选择限制和进化范围仍未得到比较研究。在这里,我们将之前的分析扩展到低G + C含量的厚壁菌门和γ-变形菌门的基因组,第二步扩展到所有已测序的细菌基因组。通过同源性推断必需性使我们能够表明,即使与非必需的高表达基因相比,必需基因在前导链中的出现频率也比其他基因高得多。在专性胞内细菌的基因组中发现的偏差较小,对于这些细菌来说,从快速生长的自由生活细菌通过同源性确定必需性是最成问题的。用于评估通过同源性确定必需性时潜在误差的交叉比较表明,在大多数情况下,确定标准的变化对总体结果影响很小。必需基因在前导链中往往比平均基因更保守,这与对这种定位的选择一致,并且可能对染色体重排施加强烈限制。这些结果表明,必需性在大多数细菌基因组的基因分布中起着基本作用。

相似文献

1
Gene essentiality determines chromosome organisation in bacteria.
Nucleic Acids Res. 2003 Nov 15;31(22):6570-7. doi: 10.1093/nar/gkg859.
2
Two essential DNA polymerases at the bacterial replication fork.
Science. 2001 Nov 23;294(5547):1716-9. doi: 10.1126/science.1066351.
3
Asymmetric substitution patterns in the two DNA strands of bacteria.
Mol Biol Evol. 1996 May;13(5):660-5. doi: 10.1093/oxfordjournals.molbev.a025626.
5
Essentiality, not expressiveness, drives gene-strand bias in bacteria.
Nat Genet. 2003 Aug;34(4):377-8. doi: 10.1038/ng1209.
8
GeneOrder3.0: software for comparing the order of genes in pairs of small bacterial genomes.
BMC Bioinformatics. 2004 May 5;5:52. doi: 10.1186/1471-2105-5-52.
10
Ongoing evolution of strand composition in bacterial genomes.
Mol Biol Evol. 2001 Sep;18(9):1789-99. doi: 10.1093/oxfordjournals.molbev.a003966.

引用本文的文献

2
Sequence modeling and design from molecular to genome scale with Evo.
Science. 2024 Nov 15;386(6723):eado9336. doi: 10.1126/science.ado9336.
3
Chromosome architecture as a determinant for biosynthetic diversity in .
Microb Genom. 2024 Nov;10(11). doi: 10.1099/mgen.0.001313.
4
Differentially used codons among essential genes in bacteria identified by machine learning-based analysis.
Mol Genet Genomics. 2024 Jul 27;299(1):72. doi: 10.1007/s00438-024-02163-0.
5
On the evolution of chromosomal regions with high gene strand bias in bacteria.
mBio. 2024 Jun 12;15(6):e0060224. doi: 10.1128/mbio.00602-24. Epub 2024 May 16.
6
Origin, evolution, and maintenance of gene-strand bias in bacteria.
Nucleic Acids Res. 2024 Apr 24;52(7):3493-3509. doi: 10.1093/nar/gkae155.
7
Transcription as source of genetic heterogeneity in budding yeast.
Yeast. 2024 Apr;41(4):171-185. doi: 10.1002/yea.3926. Epub 2024 Jan 9.
8
DNA Segregation in Enterobacteria.
EcoSal Plus. 2023 Dec 12;11(1):eesp00382020. doi: 10.1128/ecosalplus.esp-0038-2020. Epub 2023 May 9.
9
Strand asymmetries across genomic processes.
Comput Struct Biotechnol J. 2023 Mar 11;21:2036-2047. doi: 10.1016/j.csbj.2023.03.007. eCollection 2023.
10

本文引用的文献

1
An analysis of determinants of amino acids substitution rates in bacterial proteins.
Mol Biol Evol. 2004 Jan;21(1):108-16. doi: 10.1093/molbev/msh004. Epub 2003 Oct 31.
2
Essentiality, not expressiveness, drives gene-strand bias in bacteria.
Nat Genet. 2003 Aug;34(4):377-8. doi: 10.1038/ng1209.
4
Essential Bacillus subtilis genes.
Proc Natl Acad Sci U S A. 2003 Apr 15;100(8):4678-83. doi: 10.1073/pnas.0730515100. Epub 2003 Apr 7.
5
Genomic function: Rate of evolution and gene dispensability.
Nature. 2003 Jan 30;421(6922):496-7; discussion 497-8. doi: 10.1038/421496b.
6
Use and misuse of correspondence analysis in codon usage studies.
Nucleic Acids Res. 2002 Oct 15;30(20):4548-55. doi: 10.1093/nar/gkf565.
7
Genome sequence of Streptococcus agalactiae, a pathogen causing invasive neonatal disease.
Mol Microbiol. 2002 Sep;45(6):1499-513. doi: 10.1046/j.1365-2958.2002.03126.x.
8
Is there a role for replication fork asymmetry in the distribution of genes in bacterial genomes?
Trends Microbiol. 2002 Sep;10(9):393-5. doi: 10.1016/s0966-842x(02)02420-4.
10
A complete sequence of the T. tengcongensis genome.
Genome Res. 2002 May;12(5):689-700. doi: 10.1101/gr.219302.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验