Peirce Shayn M, Price Richard J, Skalak Thomas C
Dept. of Biomedical Engineering, Univ. of Virginia, Box 800759, Health System, Charlottesville, VA 22908, USA.
Am J Physiol Heart Circ Physiol. 2004 Mar;286(3):H918-25. doi: 10.1152/ajpheart.00833.2003. Epub 2003 Nov 6.
Microvascular networks undergo patterning changes that determine and reflect functional adaptations during tissue remodeling. Alterations in network architectures are a result of complex and integrated signaling events. To understand how two growth factor signals interact to stimulate angiogenesis and arterialization, we engineered spatially directed microvascular pattern changes in vivo by using combinations of focally delivered exogenous growth factors. We implanted microdelivery beads containing recombinant vascular endothelial growth factor-164 (VEGF(164)) and recombinant angiopoietin-1* (Ang-1*) into the dorsal subcutaneous tissue of fully anesthetized male Fischer 344 rats implanted with backpack window chambers, and we quantified vascular patterning changes by using intravital microscopy, a combination of architectural metrics, and immunohistochemistry. Focal delivery of VEGF(164) caused spatially directed increases in both the total number and the density of vessels with diameters <25 microm 7 days after microbead implantation. Increases were maintained out to 14 days but were reduced to control values by day 21. The addition of Ang-1* on day 7 maintained these increases out to day 21, induced vessel order ratios comparable to control levels, and was accompanied by increases in the length density of smooth muscle alpha-actin-positive vessels. We achieved spatial control of patterning changes in vivo by using multisignal stimulation via focal delivery of exogenous growth factor combinations and conclude that Ang-1* administered subsequent to VEGF(164) stimulation induces vascular growth while maintaining a network pattern consistent with native patterns that persist in the presence of vehicle control stimulation.
微血管网络会发生形态变化,这些变化决定并反映了组织重塑过程中的功能适应性。网络架构的改变是复杂且相互整合的信号事件的结果。为了了解两种生长因子信号如何相互作用以刺激血管生成和动脉化,我们通过局部递送外源性生长因子的组合,在体内设计了空间定向的微血管形态变化。我们将含有重组血管内皮生长因子 -164(VEGF(164))和重组血管生成素 -1*(Ang -1*)的微量递送珠植入完全麻醉的、植入了背包式窗口腔室的雄性Fischer 344大鼠的背部皮下组织中,并通过活体显微镜检查、多种架构指标组合以及免疫组织化学来量化血管形态变化。微珠植入7天后,局部递送VEGF(164)导致直径<25微米的血管总数和密度在空间上定向增加。这种增加一直维持到14天,但到第21天时降至对照值。在第7天添加Ang -1可使这些增加维持到第21天,诱导出与对照水平相当的血管有序比率,并伴随着平滑肌α -肌动蛋白阳性血管长度密度的增加。我们通过局部递送外源性生长因子组合进行多信号刺激,在体内实现了对形态变化的空间控制,并得出结论:在VEGF(164)刺激后施用Ang -1可诱导血管生长,同时维持与在载体对照刺激下持续存在的天然模式一致的网络模式。