Suppr超能文献

The role of the interchain disulfide bond in governing the pharmacological actions of botulinum toxin.

作者信息

Simpson Lance L, Maksymowych Andrew B, Park Jong-Beak, Bora Roop S

机构信息

Department of Medicine, Jefferson Medical College, Philadelphia, PA 19107, USA.

出版信息

J Pharmacol Exp Ther. 2004 Mar;308(3):857-64. doi: 10.1124/jpet.103.058149. Epub 2003 Nov 14.

Abstract

All serotypes of botulinum toxin possess a disulfide bond that links the heavy chain and light chain components of the holotoxin. Experiments were done to assess the functional significance of this covalent bond, and the work was facilitated by use of mercurial compounds that modify residues in the vicinity of the catalytic site. The data indicated that reduction of the interchain disulfide bond had two major effects: 1). changing conformation or orientation of the two chains, which diminished toxicity against intact cells, and 2). loosening or relocating a heavy chain belt segment that encircles the light chain and occludes the catalytic site. Interestingly, disulfide bond reduction of all serotypes produced conformational changes that diminished toxicity against intact cells, but it produced conformational changes that led to exposure of the catalytic site in only three serotypes. For the other serotypes, the catalytic site was accessible even before disulfide bond reduction. Neither of the major structural effects was dependent upon separation of the heavy chain and light chain components of the toxin, nor were they dependent on toxin substrate. Depending on the initial state of the toxin molecule, the combination of disulfide bond reduction and treatment with a mercurial compound could abolish toxicity. Therefore, this combination of treatments was used to convert active toxin into a parenteral vaccine. Administration of the modified toxin evoked a substantial IgG response, and it produced complete protection against a large dose of native toxin.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验