Suppr超能文献

利用分子结构相似性和E态指数预测啮齿动物体内药物的致癌潜力。

Predicting the carcinogenic potential of pharmaceuticals in rodents using molecular structural similarity and E-state indices.

作者信息

Contrera Joseph F, Matthews Edwin J, Daniel Benz R

机构信息

US Food and Drug Administration, Center for Drug Evaluation and Research, Office of Pharmaceutical Science (HFD-901), Informatics and Computational Safety Analysis Staff (ICSAS), Rockville, MD 20857, USA.

出版信息

Regul Toxicol Pharmacol. 2003 Dec;38(3):243-59. doi: 10.1016/s0273-2300(03)00071-0.

Abstract

MDL QSAR (formerly SciVision QSAR IS) software is one of the several software systems under evaluation by the Informatics and Computational Safety Analysis Staff (ICSAS) of the FDA Center for Drug Evaluation and Research for regulatory and scientific decision support applications. MDL QSAR software contains an integrated set of tools for similarity searching, compound clustering, and modeling molecular structure related parameters that includes 240 electrotopological E-state, connectivity, and other descriptors. These molecular descriptors can be statistically correlated with toxicological or biological endpoints. The goal of this research was to evaluate the feasibility of using MDL QSAR software to develop structure-activity relationship (SAR) models that can be used to predict the carcinogenic potential of pharmaceuticals and organic chemicals. A validation study of 108 compounds that include 86 pharmaceuticals and 22 chemicals that were not present in a control rodent carcinogenicity data set of 1275 compounds demonstrated that MDL QSAR models had excellent coverage (93%) and good sensitivity (72%) and specificity (72%) for rodent carcinogenicity. The software correctly predicted 72% of non-carcinogenic compounds and compounds with carcinogenic findings. E-state descriptors contributed to more than half of the SAR models used to predict carcinogenic activity. We believe that electrotopological E-state descriptors and QSAR IS (MDL QSAR) software are promising new in silico approaches for modeling and predicting rodent carcinogenicity and may have application for other toxicological endpoints.

摘要

MDL QSAR(原SciVision QSAR IS)软件是美国食品药品监督管理局药物评价与研究中心信息学与计算安全分析人员(ICSAS)正在评估的几种软件系统之一,用于监管和科学决策支持应用。MDL QSAR软件包含一套集成工具,用于相似性搜索、化合物聚类以及对与分子结构相关的参数进行建模,其中包括240种电拓扑E态、连接性和其他描述符。这些分子描述符可与毒理学或生物学终点进行统计关联。本研究的目的是评估使用MDL QSAR软件开发结构-活性关系(SAR)模型的可行性,该模型可用于预测药物和有机化学品的致癌潜力。一项针对108种化合物的验证研究表明,MDL QSAR模型对啮齿动物致癌性具有出色的覆盖率(93%)、良好的敏感性(72%)和特异性(72%)。这108种化合物包括86种药物和22种未包含在1275种化合物的对照啮齿动物致癌性数据集中的化学品。该软件正确预测了72%的非致癌化合物和有致癌结果的化合物。E态描述符在用于预测致癌活性的SAR模型中占比超过一半。我们认为,电拓扑E态描述符和QSAR IS(MDL QSAR)软件是用于建模和预测啮齿动物致癌性的有前景的新计算机方法,并且可能适用于其他毒理学终点。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验