Park Sungsu, Wolanin Peter M, Yuzbashyan Emil A, Lin Hai, Darnton Nicholas C, Stock Jeffry B, Silberzan Pascal, Austin Robert
Department of Physics, Princeton University, Princeton, NJ 08544, USA.
Proc Natl Acad Sci U S A. 2003 Nov 25;100(24):13910-5. doi: 10.1073/pnas.1935975100. Epub 2003 Nov 17.
The environmental topology of complex structures is used by Escherichia coli to create traveling waves of high cell density, a prelude to quorum sensing. When cells are grown to a moderate density within a confining microenvironment, these traveling waves of cell density allow the cells to find and collapse into confining topologies, which are unstable to population fluctuations above a critical threshold. This was first observed in mazes designed to mimic complex environments, then more clearly in a simpler geometry consisting of a large open area surrounding a square (250 x 250 microm) with a narrow opening of 10-30 microm. Our results thus show that under nutrient-deprived conditions bacteria search out each other in a collective manner and that the bacteria can dynamically confine themselves to highly enclosed spaces.
大肠杆菌利用复杂结构的环境拓扑来产生高细胞密度的行波,这是群体感应的前奏。当细胞在有限的微环境中生长到中等密度时,这些细胞密度行波使细胞能够找到并坍缩到有限的拓扑结构中,这些拓扑结构在高于临界阈值的种群波动下是不稳定的。这一现象首先在设计用于模拟复杂环境的迷宫中被观察到,然后在一个更简单的几何结构中更清晰地观察到,该结构由一个围绕着边长为250×250微米的正方形的大开放区域以及一个10 - 30微米的狭窄开口组成。因此,我们的结果表明,在营养缺乏的条件下,细菌以集体方式相互寻找,并且细菌能够动态地将自身限制在高度封闭的空间中。