Suppr超能文献

大肠杆菌W3110的pta突变体中的乙酸代谢:维持乙酰辅酶A通量对生长和存活的重要性

Acetate metabolism in a pta mutant of Escherichia coli W3110: importance of maintaining acetyl coenzyme A flux for growth and survival.

作者信息

Chang D E, Shin S, Rhee J S, Pan J G

机构信息

Bioprocess Engineering Division, Korea Research Institute of Bioscience and Biotechnology, Yusong, Taejon 305-600, Korea.

出版信息

J Bacteriol. 1999 Nov;181(21):6656-63. doi: 10.1128/JB.181.21.6656-6663.1999.

Abstract

In order to study the physiological role of acetate metabolism in Escherichia coli, the growth characteristics of an E. coli W3100 pta mutant defective in phosphotransacetylase, the first enzyme of the acetate pathway, were investigated. The pta mutant grown on glucose minimal medium excreted unusual by-products such as pyruvate, D-lactate, and L-glutamate instead of acetate. In an analysis of the sequential consumption of amino acids by the pta mutant growing in tryptone broth (TB), a brief lag between the consumption of amino acids normally consumed was observed, but no such lag occurred for the wild-type strain. The pta mutant was found to grow slowly on glucose, TB, or pyruvate, but it grew normally on glycerol or succinate. The defective growth and starvation survival of the pta mutant were restored by the introduction of poly-beta-hydroxybutyrate (PHB) synthesis genes (phbCAB) from Alcaligenes eutrophus, indicating that the growth defect of the pta mutant was due to a perturbation of acetyl coenzyme A (CoA) flux. By the stoichiometric analysis of the metabolic fluxes of the central metabolism, it was found that the amount of pyruvate generated from glucose transport by the phosphoenolpyruvate-dependent phosphotransferase system (PTS) exceeded the required amount of precursor metabolites downstream of pyruvate for biomass synthesis. These results suggest that E. coli excretes acetate due to the pyruvate flux from PTS and that any method which alleviates the oversupply of acetyl CoA would restore normal growth to the pta mutant.

摘要

为了研究乙酸代谢在大肠杆菌中的生理作用,我们对乙酸途径的第一种酶磷酸转乙酰酶缺陷的大肠杆菌W3100 pta突变体的生长特性进行了研究。在葡萄糖基本培养基上生长的pta突变体分泌出丙酮酸、D-乳酸和L-谷氨酸等异常副产物,而不是乙酸。在分析在胰蛋白胨肉汤(TB)中生长的pta突变体对氨基酸的顺序消耗时,观察到正常消耗的氨基酸之间有短暂的延迟,但野生型菌株没有这种延迟。发现pta突变体在葡萄糖、TB或丙酮酸上生长缓慢,但在甘油或琥珀酸上生长正常。通过引入来自真养产碱菌的聚-β-羟基丁酸酯(PHB)合成基因(phbCAB),恢复了pta突变体的生长缺陷和饥饿存活能力,这表明pta突变体的生长缺陷是由于乙酰辅酶A(CoA)通量的扰动。通过对中心代谢的代谢通量进行化学计量分析,发现磷酸烯醇丙酮酸依赖性磷酸转移酶系统(PTS)从葡萄糖转运产生的丙酮酸量超过了丙酮酸下游用于生物量合成的前体代谢物所需量。这些结果表明,大肠杆菌由于PTS的丙酮酸通量而分泌乙酸,并且任何减轻乙酰辅酶A供应过剩的方法都将使pta突变体恢复正常生长。

相似文献

3
The enzymic interconversion of acetate and acetyl-coenzyme A in Escherichia coli.
J Gen Microbiol. 1977 Oct;102(2):327-36. doi: 10.1099/00221287-102-2-327.
9
Improving poly-3-hydroxybutyrate production in Escherichia coli by combining the increase in the NADPH pool and acetyl-CoA availability.
Antonie Van Leeuwenhoek. 2014 Apr;105(4):687-96. doi: 10.1007/s10482-014-0124-5. Epub 2014 Feb 6.

引用本文的文献

1
Fedbatchdesigner: A User-Friendly Dashboard for Modeling and Optimizing Growth-Arrested Fed-Batch Processes.
ACS Synth Biol. 2025 Aug 15;14(8):3252-3257. doi: 10.1021/acssynbio.5c00357. Epub 2025 Jul 21.
3
Precursor prioritization for p-cymene production through synergistic integration of biology and chemistry.
Biotechnol Biofuels Bioprod. 2022 Nov 17;15(1):126. doi: 10.1186/s13068-022-02226-7.
4
The Expression Modulation of the Key Enzyme Acc for Highly Efficient 3-Hydroxypropionic Acid Production.
Front Microbiol. 2022 May 11;13:902848. doi: 10.3389/fmicb.2022.902848. eCollection 2022.
5
Engineering for efficient aerobic conversion of glucose to fumaric acid.
Biotechnol Rep (Amst). 2022 Jan 17;33:e00703. doi: 10.1016/j.btre.2022.e00703. eCollection 2022 Mar.
6
Genome-scale metabolic modelling when changes in environmental conditions affect biomass composition.
PLoS Comput Biol. 2021 May 24;17(5):e1008528. doi: 10.1371/journal.pcbi.1008528. eCollection 2021 May.
7
Inactivation of the Pta-AckA pathway impairs fitness of during overflow metabolism.
J Bacteriol. 2021 May 1;203(9). doi: 10.1128/JB.00660-20. Epub 2021 Feb 16.
8
Metabolic engineering of Escherichia coli W for isobutanol production on chemically defined medium and cheese whey as alternative raw material.
J Ind Microbiol Biotechnol. 2020 Dec;47(12):1117-1132. doi: 10.1007/s10295-020-02319-y. Epub 2020 Oct 17.
9
Acetate formation during recombinant protein production in K-12 with an elevated NAD(H) pool.
Eng Life Sci. 2019 Sep 8;19(11):770-780. doi: 10.1002/elsc.201900045. eCollection 2019 Nov.
10
Comparison of engineered Escherichia coli AF1000 and BL21 strains for (R)-3-hydroxybutyrate production in fed-batch cultivation.
Appl Microbiol Biotechnol. 2019 Jul;103(14):5627-5639. doi: 10.1007/s00253-019-09876-y. Epub 2019 May 18.

本文引用的文献

1
Comparative studies of Escherichia coli strains using different glucose uptake systems: Metabolism and energetics.
Biotechnol Bioeng. 1997 Dec 5;56(5):583-90. doi: 10.1002/(SICI)1097-0290(19971205)56:5<583::AID-BIT12>3.0.CO;2-D.
2
Pathway analysis, engineering, and physiological considerations for redirecting central metabolism.
Biotechnol Bioeng. 1996 Oct 5;52(1):129-40. doi: 10.1002/(SICI)1097-0290(19961005)52:1<129::AID-BIT13>3.0.CO;2-J.
4
Effect of alteration of the acetic acid synthesis pathway on the fermentation pattern of escherichia coli.
Biotechnol Bioeng. 1991 Dec 20;38(11):1318-24. doi: 10.1002/bit.260381109.
5
Role of the GlnK signal transduction protein in the regulation of nitrogen assimilation in Escherichia coli.
Mol Microbiol. 1998 Jul;29(2):431-47. doi: 10.1046/j.1365-2958.1998.00932.x.
8
The ldhA gene encoding the fermentative lactate dehydrogenase of Escherichia coli.
Microbiology (Reading). 1997 Jan;143 ( Pt 1):187-195. doi: 10.1099/00221287-143-1-187.
9
Flux analysis and control of the central metabolic pathways in Escherichia coli.
FEMS Microbiol Rev. 1996 Dec;19(2):85-116. doi: 10.1111/j.1574-6976.1996.tb00255.x.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验