Deneve Sophie
Département d'Etudes Cognitives, Ecole Normale Supérieure, College de France 75005 Paris, France.
Neural Comput. 2008 Jan;20(1):118-45. doi: 10.1162/neco.2008.20.1.118.
In the companion letter in this issue ("Bayesian Spiking Neurons I: Inference"), we showed that the dynamics of spiking neurons can be interpreted as a form of Bayesian integration, accumulating evidence over time about events in the external world or the body. We proceed to develop a theory of Bayesian learning in spiking neural networks, where the neurons learn to recognize temporal dynamics of their synaptic inputs. Meanwhile, successive layers of neurons learn hierarchical causal models for the sensory input. The corresponding learning rule is local, spike-time dependent, and highly nonlinear. This approach provides a principled description of spiking and plasticity rules maximizing information transfer, while limiting the number of costly spikes, between successive layers of neurons.
在本期的随附文章《贝叶斯脉冲神经元I:推理》中,我们表明脉冲神经元的动力学可以解释为一种贝叶斯积分形式,随着时间积累关于外部世界或身体中事件的证据。我们接着在脉冲神经网络中发展一种贝叶斯学习理论,其中神经元学习识别其突触输入的时间动态。同时,连续的神经元层学习感觉输入的分层因果模型。相应的学习规则是局部的、依赖于脉冲时间的且高度非线性的。这种方法提供了对脉冲和可塑性规则的原则性描述,在连续的神经元层之间最大化信息传递,同时限制代价高昂的脉冲数量。