Suppr超能文献

葡萄糖阻遏不同条件下酿酒酵母中心代谢中的网络识别与通量定量分析

Network identification and flux quantification in the central metabolism of Saccharomyces cerevisiae under different conditions of glucose repression.

作者信息

Gombert A K, Moreira dos Santos M, Christensen B, Nielsen J

机构信息

Center for Process Biotechnology, Department of Biotechnology, Technical University of Denmark, DK-2800, Lyngby, Denmark.

出版信息

J Bacteriol. 2001 Feb;183(4):1441-51. doi: 10.1128/JB.183.4.1441-1451.2001.

Abstract

The network structure and the metabolic fluxes in central carbon metabolism were characterized in aerobically grown cells of Saccharomyces cerevisiae. The cells were grown under both high and low glucose concentrations, i.e., either in a chemostat at steady state with a specific growth rate of 0.1 h(-1) or in a batch culture with a specific growth rate of 0.37 h(-1). Experiments were carried out using [1-(13)C]glucose as the limiting substrate, and the resulting summed fractional labelings of intracellular metabolites were measured by gas chromatography coupled to mass spectrometry. The data were used as inputs to a flux estimation routine that involved appropriate mathematical modelling of the central carbon metabolism of S. cerevisiae. The results showed that the analysis is very robust, and it was possible to quantify the fluxes in the central carbon metabolism under both growth conditions. In the batch culture, 16.2 of every 100 molecules of glucose consumed by the cells entered the pentose-phosphate pathway, whereas the same relative flux was 44.2 per 100 molecules in the chemostat. The tricarboxylic acid cycle does not operate as a cycle in batch-growing cells, in contrast to the chemostat condition. Quantitative evidence was also found for threonine aldolase and malic enzyme activities, in accordance with published data. Disruption of the MIG1 gene did not cause changes in the metabolic network structure or in the flux pattern.

摘要

在酿酒酵母的需氧生长细胞中,对中心碳代谢的网络结构和代谢通量进行了表征。细胞在高葡萄糖浓度和低葡萄糖浓度下均进行培养,即在恒化器中以0.1 h⁻¹的比生长速率在稳态下培养,或在分批培养中以0.37 h⁻¹的比生长速率培养。实验使用[1-(¹³)C]葡萄糖作为限制性底物进行,通过气相色谱-质谱联用测定细胞内代谢物的总分数标记。这些数据被用作通量估计程序的输入,该程序涉及对酿酒酵母中心碳代谢进行适当的数学建模。结果表明,该分析非常稳健,并且能够量化两种生长条件下中心碳代谢的通量。在分批培养中,细胞消耗的每100个葡萄糖分子中有16.2个进入磷酸戊糖途径,而在恒化器中相同的相对通量为每100个分子44.2个。与恒化器条件相反,三羧酸循环在分批生长的细胞中不作为一个循环运行。根据已发表的数据,还发现了苏氨酸醛缩酶和苹果酸酶活性的定量证据。MIG1基因的破坏并未导致代谢网络结构或通量模式的变化。

相似文献

5
¹³C-based metabolic flux analysis of Saccharomyces cerevisiae with a reduced Crabtree effect.
J Biosci Bioeng. 2015 Aug;120(2):140-4. doi: 10.1016/j.jbiosc.2014.12.014. Epub 2015 Jan 26.

引用本文的文献

4
Inducible Synthetic Growth Regulation Using the ClpXP Proteasome Enhances cis,cis-Muconic Acid and Glycolic Acid Yields in .
ACS Synth Biol. 2023 Apr 21;12(4):1021-1033. doi: 10.1021/acssynbio.2c00467. Epub 2023 Mar 28.
5
Metabolic engineering of for biomass-based applications.
3 Biotech. 2022 Oct;12(10):259. doi: 10.1007/s13205-022-03324-x. Epub 2022 Sep 3.
6
Monitoring Intracellular Metabolite Dynamics in during Industrially Relevant Famine Stimuli.
Metabolites. 2022 Mar 18;12(3):263. doi: 10.3390/metabo12030263.
9
Enzyme-constrained models predict the dynamics of Saccharomyces cerevisiae growth in continuous, batch and fed-batch bioreactors.
Microb Biotechnol. 2022 May;15(5):1434-1445. doi: 10.1111/1751-7915.13995. Epub 2022 Jan 20.
10
What makes Komagataella phaffii non-conventional?
FEMS Yeast Res. 2021 Dec 24;21(8). doi: 10.1093/femsyr/foab059.

本文引用的文献

1
A metabolic network stoichiometry analysis of microbial growth and product formation.
Biotechnol Bioeng. 1995 Dec 20;48(6):681-98. doi: 10.1002/bit.260480617.
2
Isotopomer analysis using GC-MS.
Metab Eng. 1999 Oct;1(4):282-90. doi: 10.1006/mben.1999.0117.
5
Functional analysis of 150 deletion mutants in Saccharomyces cerevisiae by a systematic approach.
Mol Gen Genet. 1999 Dec;262(4-5):683-702. doi: 10.1007/pl00013817.
7
10
Glucose repression in yeast.
Curr Opin Microbiol. 1999 Apr;2(2):202-7. doi: 10.1016/S1369-5274(99)80035-6.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验