Hematology, Oncology and SCT Research Center, Tehran University of Medical Sciences, Tehran, Iran.
CODE AHOI, Rostock, Germany.
NPJ Syst Biol Appl. 2023 May 20;9(1):15. doi: 10.1038/s41540-023-00281-w.
Genome-scale metabolic models (GEMs) are extensively used to simulate cell metabolism and predict cell phenotypes. GEMs can also be tailored to generate context-specific GEMs, using omics data integration approaches. To date, many integration approaches have been developed, however, each with specific pros and cons; and none of these algorithms systematically outperforms the others. The key to successful implementation of such integration algorithms lies in the optimal selection of parameters, and thresholding is a crucial component in this process. To improve the predictive accuracy of context-specific models, we introduce a new integration framework that improves the ranking of related genes and homogenizes the expression values of those gene sets using single-sample Gene Set Enrichment Analysis (ssGSEA). In this study, we coupled ssGSEA with GIMME and validated the advantages of the proposed framework to predict the ethanol formation of yeast grown in the glucose-limited chemostats, and to simulate metabolic behaviors of yeast growth in four different carbon sources. This framework enhances the predictive accuracy of GIMME which we demonstrate for predicting the yeast physiology in nutrient-limited cultures.
基因组规模代谢模型(GEMs)被广泛用于模拟细胞代谢并预测细胞表型。GEMs 也可以通过整合组学数据的方法来定制生成特定于上下文的 GEMs。迄今为止,已经开发了许多整合方法,但是每种方法都有其特定的优缺点;而且这些算法都没有系统地优于其他算法。成功实施此类集成算法的关键在于对参数进行最佳选择,而阈值处理是该过程中的关键组成部分。为了提高特定于上下文模型的预测准确性,我们引入了一种新的集成框架,该框架使用单样本基因集富集分析(ssGSEA)来提高相关基因的排名并均匀化这些基因集的表达值。在这项研究中,我们将 ssGSEA 与 GIMME 相结合,并验证了所提出的框架在预测酵母在葡萄糖限制恒化器中生长时的乙醇形成以及模拟酵母在四种不同碳源中生长的代谢行为方面的优势。该框架提高了 GIMME 的预测准确性,我们证明了它在预测营养限制培养物中的酵母生理学方面的优势。