van Maris Antonius J A, Geertman Jan-Maarten A, Vermeulen Alexander, Groothuizen Matthijs K, Winkler Aaron A, Piper Matthew D W, van Dijken Johannes P, Pronk Jack T
Department of Biotechnology, Delft University of Technology, NL-2628 BC Delft. BIRD Engineering B.V., NL-3044 CK Rotterdam, The Netherlands.
Appl Environ Microbiol. 2004 Jan;70(1):159-66. doi: 10.1128/AEM.70.1.159-166.2004.
The absence of alcoholic fermentation makes pyruvate decarboxylase-negative (Pdc(-)) strains of Saccharomyces cerevisiae an interesting platform for further metabolic engineering of central metabolism. However, Pdc(-) S. cerevisiae strains have two growth defects: (i) growth on synthetic medium in glucose-limited chemostat cultures requires the addition of small amounts of ethanol or acetate and (ii) even in the presence of a C(2) compound, these strains cannot grow in batch cultures on synthetic medium with glucose. We used two subsequent phenotypic selection strategies to obtain a Pdc(-) strain without these growth defects. An acetate-independent Pdc(-) mutant was obtained via (otherwise) glucose-limited chemostat cultivation by progressively lowering the acetate content in the feed. Transcriptome analysis did not reveal the mechanisms behind the C(2) independence. Further selection for glucose tolerance in shake flasks resulted in a Pdc(-) S. cerevisiae mutant (TAM) that could grow in batch cultures ( micro (max) = 0.20 h(-1)) on synthetic medium, with glucose as the sole carbon source. Although the exact molecular mechanisms underlying the glucose-tolerant phenotype were not resolved, transcriptome analysis of the TAM strain revealed increased transcript levels of many glucose-repressible genes relative to the isogenic wild type in nitrogen-limited chemostat cultures with excess glucose. In pH-controlled aerobic batch cultures, the TAM strain produced large amounts of pyruvate. By repeated glucose feeding, a pyruvate concentration of 135 g liter(-1) was obtained, with a specific pyruvate production rate of 6 to 7 mmol g of biomass(-1) h(-1) during the exponential-growth phase and an overall yield of 0.54 g of pyruvate g of glucose(-1).
酒精发酵的缺失使得酿酒酵母丙酮酸脱羧酶阴性(Pdc(-))菌株成为进一步进行中心代谢途径代谢工程改造的一个有趣平台。然而,Pdc(-)酿酒酵母菌株存在两个生长缺陷:(i)在葡萄糖受限的恒化器培养的合成培养基上生长需要添加少量乙醇或乙酸盐,以及(ii)即使存在C(2)化合物,这些菌株在含有葡萄糖的合成培养基上进行分批培养时也无法生长。我们采用了两种连续的表型选择策略来获得没有这些生长缺陷的Pdc(-)菌株。通过在(其他方面)葡萄糖受限的恒化器培养过程中逐步降低进料中的乙酸盐含量,获得了一株不依赖乙酸盐的Pdc(-)突变体。转录组分析未揭示C(2)独立性背后的机制。在摇瓶中进一步选择葡萄糖耐受性,得到了一株Pdc(-)酿酒酵母突变体(TAM),该突变体能够在以葡萄糖作为唯一碳源的合成培养基上进行分批培养(最大比生长速率 = 0.20 h(-1))。尽管耐葡萄糖表型背后的确切分子机制尚未明确,但在氮受限且葡萄糖过量的恒化器培养中,对TAM菌株的转录组分析显示,相对于同基因野生型,许多葡萄糖可阻遏基因的转录水平有所增加。在pH控制的需氧分批培养中,TAM菌株产生了大量丙酮酸。通过重复补料葡萄糖,获得了135 g/L的丙酮酸浓度,在指数生长期丙酮酸的比生产速率为6至7 mmol/g生物量·h(-1),丙酮酸对葡萄糖的总产率为0.54 g/g。