Lee Sik-Yum, Xu Liang
Department of Statistics, The Chinese University of Hong Kong, Shatin, NT, China.
Br J Math Stat Psychol. 2003 Nov;56(Pt 2):249-70. doi: 10.1348/000711003770480039.
This paper proposes a method to assess the local influence of minor perturbations for a structural equation model with continuous and ordinal categorical variables. The key idea is to treat the latent variables as hypothetical missing data and then apply Cook's approach to the conditional expectation of the complete-data log-likelihood function in the corresponding EM algorithm for deriving the normal curvature and the conformal normal curvature. Building blocks for achieving the diagnostic measures are computed via observations generated by the Gibbs sampler. It is shown that the proposed methodology is relatively simple to implement, computationally efficient, and feasible for a wide variety of perturbation schemes. Two illustrative real examples are presented.
本文提出了一种方法,用于评估具有连续和有序分类变量的结构方程模型中微小扰动的局部影响。关键思想是将潜在变量视为假设的缺失数据,然后将库克方法应用于相应期望最大化(EM)算法中完整数据对数似然函数的条件期望,以推导法曲率和共形法曲率。通过吉布斯采样器生成的观测值来计算实现诊断度量的构建块。结果表明,所提出的方法实施起来相对简单,计算效率高,并且对于各种扰动方案都是可行的。文中给出了两个说明性的实际例子。