Suppr超能文献

带有协变量的混合二分类和连续反应扩展混合因子分析模型。

Extended mixture factor analysis model with covariates for mixed binary and continuous responses.

机构信息

Department of Psychology, University of California, Los Angeles, CA, USA.

出版信息

Stat Med. 2011 Sep 20;30(21):2634-47. doi: 10.1002/sim.4310. Epub 2011 Jul 22.

Abstract

Finite mixture factor analysis provides a parsimonious model to explore latent group structures of high-dimensional data. In this modeling framework, we can explore latent structures for continuous responses. However, dichotomous items are often used to define latent domains in practice. This paper proposes an extended finite mixture factor analysis model with covariates to model mixed continuous and binary responses. We use a Monte Carlo expectation-maximization (MCEM) algorithm to estimate the model. In the E step, closed-form solutions are not available for the conditional expectation of complete data log likelihood, so it is approximated by sample means, which are in turn generated by the Gibbs sampler from the joint conditional distribution of latent variables. To monitor the convergence of the MCEM algorithm, we use bridge sampling to calculate the log likelihood ratio of two successive iterations. We adopt a diagnostic plot of the log likelihood ratio against iterations for monitoring the convergence of the MCEM algorithm. We compare different models based on BIC, in which we approximate the observed data log likelihood by using a Monte Carlo method. We investigate the computational properties of the MCEM algorithm by simulation studies. We use a real data example to illustrate the practical usefulness of the model. Finally, we discuss limitations and possible extensions.

摘要

有限混合因子分析提供了一种简洁的模型,用于探索高维数据的潜在群组结构。在这个建模框架中,我们可以探索连续反应的潜在结构。然而,在实践中,通常使用二分项目来定义潜在领域。本文提出了一种具有协变量的扩展有限混合因子分析模型,用于对混合连续和二项反应进行建模。我们使用蒙特卡罗期望最大化 (MCEM) 算法来估计模型。在 E 步中,完整数据对数似然的条件期望没有闭式解,因此用样本均值近似,而样本均值则由来自潜在变量联合条件分布的 Gibbs 抽样生成。为了监测 MCEM 算法的收敛性,我们使用桥采样来计算两个连续迭代的对数似然比。我们采用对数似然比与迭代的诊断图来监测 MCEM 算法的收敛性。我们基于 BIC 来比较不同的模型,其中我们使用蒙特卡罗方法来近似观察数据对数似然。我们通过模拟研究来研究 MCEM 算法的计算特性。我们使用真实数据示例来说明模型的实际用途。最后,我们讨论了限制和可能的扩展。

相似文献

3
8

本文引用的文献

5
Local solutions in the estimation of growth mixture models.生长混合模型估计中的局部解。
Psychol Methods. 2006 Mar;11(1):36-53. doi: 10.1037/1082-989X.11.1.36.
8
Bayesian analysis of mixtures of factor analyzers.因子分析器混合模型的贝叶斯分析。
Neural Comput. 2001 May;13(5):993-1002. doi: 10.1162/08997660151134299.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验