Department of Psychology, University of California, Los Angeles, CA, USA.
Stat Med. 2011 Sep 20;30(21):2634-47. doi: 10.1002/sim.4310. Epub 2011 Jul 22.
Finite mixture factor analysis provides a parsimonious model to explore latent group structures of high-dimensional data. In this modeling framework, we can explore latent structures for continuous responses. However, dichotomous items are often used to define latent domains in practice. This paper proposes an extended finite mixture factor analysis model with covariates to model mixed continuous and binary responses. We use a Monte Carlo expectation-maximization (MCEM) algorithm to estimate the model. In the E step, closed-form solutions are not available for the conditional expectation of complete data log likelihood, so it is approximated by sample means, which are in turn generated by the Gibbs sampler from the joint conditional distribution of latent variables. To monitor the convergence of the MCEM algorithm, we use bridge sampling to calculate the log likelihood ratio of two successive iterations. We adopt a diagnostic plot of the log likelihood ratio against iterations for monitoring the convergence of the MCEM algorithm. We compare different models based on BIC, in which we approximate the observed data log likelihood by using a Monte Carlo method. We investigate the computational properties of the MCEM algorithm by simulation studies. We use a real data example to illustrate the practical usefulness of the model. Finally, we discuss limitations and possible extensions.
有限混合因子分析提供了一种简洁的模型,用于探索高维数据的潜在群组结构。在这个建模框架中,我们可以探索连续反应的潜在结构。然而,在实践中,通常使用二分项目来定义潜在领域。本文提出了一种具有协变量的扩展有限混合因子分析模型,用于对混合连续和二项反应进行建模。我们使用蒙特卡罗期望最大化 (MCEM) 算法来估计模型。在 E 步中,完整数据对数似然的条件期望没有闭式解,因此用样本均值近似,而样本均值则由来自潜在变量联合条件分布的 Gibbs 抽样生成。为了监测 MCEM 算法的收敛性,我们使用桥采样来计算两个连续迭代的对数似然比。我们采用对数似然比与迭代的诊断图来监测 MCEM 算法的收敛性。我们基于 BIC 来比较不同的模型,其中我们使用蒙特卡罗方法来近似观察数据对数似然。我们通过模拟研究来研究 MCEM 算法的计算特性。我们使用真实数据示例来说明模型的实际用途。最后,我们讨论了限制和可能的扩展。