Suppr超能文献

类别学习对形状表征的影响:维度可能存在偏差但无法区分。

The effect of category learning on the representation of shape: dimensions can be biased but not differentiated.

作者信息

Op de Beeck Hans, Wagemans Johan, Vogels Rufin

机构信息

Lab for Neuro- & Psychophysiology, University of Leuven, Leuven, Belgium.

出版信息

J Exp Psychol Gen. 2003 Dec;132(4):491-511. doi: 10.1037/0096-3445.132.4.491.

Abstract

Recent studies have suggested a profound influence of category learning on visual perception, resulting in independent processing of previously integral dimensions. The authors reinvestigate this issue for shape dimensions. They first extend previous findings that some shape dimensions (aspect ratio and curvature) are processed in a separable way, whereas others (radial frequency components) are not. They then show that a category-learning phase improved the discrimination of a relevant with respect to an irrelevant dimension, but only for separable dimensions. No similar effect was found on the relative sensitivity for integral shape dimensions. Thus, category learning is capable of biasing separable shape dimensions but does not alter the status of dimensions in the visual system as either separable or integral.

摘要

最近的研究表明,类别学习对视觉感知有深远影响,导致对先前整合维度的独立处理。作者针对形状维度重新研究了这个问题。他们首先扩展了先前的研究结果,即一些形状维度(长宽比和曲率)以可分离的方式进行处理,而其他维度(径向频率分量)则不然。然后他们表明,一个类别学习阶段提高了对相关维度相对于不相关维度的辨别能力,但仅适用于可分离维度。在整体形状维度的相对敏感性上未发现类似效果。因此,类别学习能够使可分离的形状维度产生偏差,但不会改变视觉系统中维度作为可分离或整体的状态。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验