Department of Psychology.
Department of Statistical Science.
Psychol Rev. 2021 Nov;128(6):1145-1186. doi: 10.1037/rev0000310. Epub 2021 Sep 13.
Much categorization behavior can be explained by family resemblance: New items are classified by comparison with previously learned exemplars. However, categorization behavior also shows a variety of dimensional biases, where the underlying space has so-called "separable" dimensions: Ease of learning categories depends on how the stimuli align with the separable dimensions of the space. For example, if a set of objects of various sizes and colors can be accurately categorized using a single separable dimension (e.g., size), then category learning will be fast, while if the category is determined by both dimensions, learning will be slow. To capture these dimensional biases, almost all models of categorization supplement family resemblance with either rule-based systems or selective attention to separable dimensions. But these models do not explain how separable dimensions initially arise; they are presumed to be unexplained psychological primitives. We develop, instead, a pure family resemblance version of the Rational Model of Categorization (RMC), which we term the Rational Exclusively Family RESemblance Hierarchy (REFRESH), which does not presuppose any separable dimensions in the space of stimuli. REFRESH infers how the stimuli are clustered and uses a hierarchical prior to learn expectations about the variability of clusters across categories. We first demonstrate the dimensional alignment of natural-category features and then show how through a lifetime of categorization experience REFRESH will learn prior expectations that clusters of stimuli will align with separable dimensions. REFRESH captures the key dimensional biases and also explains their stimulus-dependence and how they are learned and develop. (PsycInfo Database Record (c) 2021 APA, all rights reserved).
新的项目通过与之前学习过的范例进行比较来进行分类。然而,分类行为也表现出各种维度偏差,其中潜在的空间具有所谓的“可分离”维度:类别学习的难易程度取决于刺激与空间的可分离维度的对齐方式。例如,如果一组具有不同大小和颜色的物体可以使用单个可分离维度(例如大小)进行准确分类,那么类别学习将很快,而如果类别由两个维度决定,那么学习将很慢。为了捕捉这些维度偏差,几乎所有的分类模型都在用基于规则的系统或对可分离维度的选择性注意来补充家族相似性。但是,这些模型并没有解释可分离维度最初是如何产生的;它们被认为是未解释的心理基元。相反,我们开发了一种纯粹的家族相似性版本的理性分类模型(RMC),我们称之为理性仅家族相似性层次结构(REFRESH),它不假设刺激空间中有任何可分离维度。REFRESH 推断刺激是如何聚类的,并使用层次结构来学习跨类别的聚类变化的期望。我们首先展示了自然类别特征的维度对齐,然后展示了通过一生的分类经验,REFRESH 将学习关于刺激聚类与可分离维度对齐的先验期望。REFRESH 捕捉到了关键的维度偏差,还解释了它们的刺激依赖性以及它们是如何学习和发展的。(PsycInfo 数据库记录(c)2021 APA,保留所有权利)。