Suppr超能文献

用于人工通用智能和生物通用智能的基于对称性的表示。

Symmetry-Based Representations for Artificial and Biological General Intelligence.

作者信息

Higgins Irina, Racanière Sébastien, Rezende Danilo

机构信息

DeepMind, London, United Kingdom.

出版信息

Front Comput Neurosci. 2022 Apr 14;16:836498. doi: 10.3389/fncom.2022.836498. eCollection 2022.

Abstract

Biological intelligence is remarkable in its ability to produce complex behavior in many diverse situations through data efficient, generalizable, and transferable skill acquisition. It is believed that learning "good" sensory representations is important for enabling this, however there is little agreement as to what a good representation should look like. In this review article we are going to argue that symmetry transformations are a fundamental principle that can guide our search for what makes a good representation. The idea that there exist transformations (symmetries) that affect some aspects of the system but not others, and their relationship to conserved quantities has become central in modern physics, resulting in a more unified theoretical framework and even ability to predict the existence of new particles. Recently, symmetries have started to gain prominence in machine learning too, resulting in more data efficient and generalizable algorithms that can mimic some of the complex behaviors produced by biological intelligence. Finally, first demonstrations of the importance of symmetry transformations for representation learning in the brain are starting to arise in neuroscience. Taken together, the overwhelming positive effect that symmetries bring to these disciplines suggest that they may be an important general framework that determines the structure of the universe, constrains the nature of natural tasks and consequently shapes both biological and artificial intelligence.

摘要

生物智能在通过数据高效、可推广且可转移的技能习得,在许多不同情况下产生复杂行为的能力方面表现卓越。人们认为,学习“良好”的感官表征对于实现这一点很重要,然而对于良好的表征应该是什么样子,几乎没有达成共识。在这篇综述文章中,我们将论证对称变换是一个基本原则,它可以指导我们寻找构成良好表征的要素。存在一些变换(对称性)会影响系统的某些方面而不影响其他方面,以及它们与守恒量的关系这一观点,已成为现代物理学的核心,从而产生了一个更统一的理论框架,甚至能够预测新粒子的存在。最近,对称性在机器学习中也开始变得突出,产生了更数据高效且可推广的算法,这些算法可以模仿生物智能产生的一些复杂行为。最后,神经科学中也开始出现关于对称变换对大脑表征学习重要性的初步证明。综上所述,对称性给这些学科带来的压倒性积极影响表明,它们可能是一个重要的通用框架,决定了宇宙的结构,限制了自然任务的性质,从而塑造了生物和人工智能。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e6ba/9049963/997bc1105559/fncom-16-836498-g0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验