Brennan Patricia Flatley, Aronson Alan R
University of Wisconsin-Madison, 372 Mechanical Engineering, 1513 University Avenue, Madison, WI 53706, USA.
J Biomed Inform. 2003 Aug-Oct;36(4-5):334-41. doi: 10.1016/j.jbi.2003.09.017.
The purpose of this project is to explore the feasibility of detecting terms within the electronic messages of patients that could be used to effectively search electronic knowledge resources and bring health information resources into the hands of patients. Our team is exploring the application of the natural language processing (NLP) tools built within the Lister Hill Center at the National Library of Medicine (NLM) to the challenge of detecting relevant concepts from the Unified Medical Language System (UMLS) within the free text of lay people's electronic messages (e-mail). We obtained a sample of electronic messages sent by patients participating in a randomized field evaluation of an internet-based home care support service to the project nurse, and we subjected elements of these messages to a series of analyses using several vocabularies from the UMLS Metathesaurus and the selected NLP tools. The nursing vocabularies provide an excellent starting point for this exercise because their domain encompasses patient's responses to health challenges. In successive runs we augmented six nursing vocabularies (NANDA Nursing Diagnosis, Nursing Interventions Classification, Nursing Outcomes Classification, Home Health Classification, Omaha System, and the Patient Care Data Set) with selected sets of clinical terminologies (International Classification of Primary Care; International Classification of Primary Care- American English; Micromedex DRUGDEX; National Drug Data File; Thesaurus of Psychological Terms; WHO Adverse Drug Reaction Terminology) and then additionally with either Medical Subject Heading (MeSH) or SNOMED International terms. The best performance was obtained when the nursing vocabularies were complemented with selected clinical terminologies. These findings have implications not only for facilitating lay people's access to electronic knowledge resources but may also be of assistance in developing new tools to aid in linking free text (e.g., clinical notes) to lexically complex knowledge resources such as those emerging from the Human Genome Project.
本项目的目的是探索在患者电子信息中检测术语的可行性,这些术语可用于有效搜索电子知识资源,并将健康信息资源交到患者手中。我们的团队正在探索国立医学图书馆(NLM)利斯特·希尔中心开发的自然语言处理(NLP)工具在从外行人电子信息(电子邮件)的自由文本中检测统一医学语言系统(UMLS)相关概念这一挑战中的应用。我们获取了参与一项基于互联网的家庭护理支持服务随机现场评估的患者发给项目护士的电子信息样本,并使用UMLS元词表中的几种词汇表和选定的NLP工具对这些信息的元素进行了一系列分析。护理词汇表为这项工作提供了一个很好的起点,因为其领域涵盖了患者对健康挑战的反应。在连续的运行中,我们用选定的临床术语集(初级保健国际分类;初级保健国际分类 - 美国英语;Micromedex DRUGDEX;国家药品数据文件;心理学术语词典;世界卫生组织药品不良反应术语)扩充了六个护理词汇表(北美护理诊断协会护理诊断、护理干预分类、护理结果分类、家庭健康分类、奥马哈系统和患者护理数据集),然后又额外添加了医学主题词表(MeSH)或国际医学术语系统命名法(SNOMED International)术语。当护理词汇表与选定的临床术语相结合时,获得了最佳性能。这些发现不仅对方便外行人获取电子知识资源有意义,而且可能有助于开发新工具,以帮助将自由文本(如临床笔记)与词汇复杂的知识资源(如人类基因组计划产生的资源)相链接。