Suppr超能文献

使用临床记录比较统一医学语言系统术语以识别心脏病风险

Comparison of UMLS terminologies to identify risk of heart disease using clinical notes.

作者信息

Shivade Chaitanya, Malewadkar Pranav, Fosler-Lussier Eric, Lai Albert M

机构信息

Department of Computer Science and Engineering, The Ohio State University, Columbus, OH, USA.

Department of Computer Science and Engineering, The Ohio State University, Columbus, OH, USA.

出版信息

J Biomed Inform. 2015 Dec;58 Suppl(Suppl):S103-S110. doi: 10.1016/j.jbi.2015.08.025. Epub 2015 Sep 12.

Abstract

The second track of the 2014 i2b2 challenge asked participants to automatically identify risk factors for heart disease among diabetic patients using natural language processing techniques for clinical notes. This paper describes a rule-based system developed using a combination of regular expressions, concepts from the Unified Medical Language System (UMLS), and freely-available resources from the community. With a performance (F1=90.7) that is significantly higher than the median (F1=87.20) and close to the top performing system (F1=92.8), it was the best rule-based system of all the submissions in the challenge. We also used this system to evaluate the utility of different terminologies in the UMLS towards the challenge task. Of the 155 terminologies in the UMLS, 129 (76.78%) have no representation in the corpus. The Consumer Health Vocabulary had very good coverage of relevant concepts and was the most useful terminology for the challenge task. While segmenting notes into sections and lists has a significant impact on the performance, identifying negations and experiencer of the medical event results in negligible gain.

摘要

2014年i2b2挑战赛的第二个赛道要求参与者使用自然语言处理技术对临床记录进行自动识别糖尿病患者的心脏病风险因素。本文描述了一个基于规则的系统,该系统结合了正则表达式、统一医学语言系统(UMLS)中的概念以及社区中免费可用的资源开发而成。其性能(F1=90.7)显著高于中位数(F1=87.20)且接近表现最佳的系统(F1=92.8),是挑战赛所有提交作品中最佳的基于规则的系统。我们还使用该系统评估了UMLS中不同术语对挑战任务的效用。在UMLS的155个术语中,有129个(76.78%)在语料库中没有体现。消费者健康词汇对相关概念的覆盖范围非常好,是挑战任务中最有用的术语。虽然将记录分割成章节和列表对性能有显著影响,但识别医疗事件的否定和经历者带来的增益可忽略不计。

相似文献

1
Comparison of UMLS terminologies to identify risk of heart disease using clinical notes.
J Biomed Inform. 2015 Dec;58 Suppl(Suppl):S103-S110. doi: 10.1016/j.jbi.2015.08.025. Epub 2015 Sep 12.
2
Identifying risk factors for heart disease over time: Overview of 2014 i2b2/UTHealth shared task Track 2.
J Biomed Inform. 2015 Dec;58 Suppl(Suppl):S67-S77. doi: 10.1016/j.jbi.2015.07.001. Epub 2015 Jul 22.
3
Annotating risk factors for heart disease in clinical narratives for diabetic patients.
J Biomed Inform. 2015 Dec;58 Suppl(Suppl):S78-S91. doi: 10.1016/j.jbi.2015.05.009. Epub 2015 May 21.
4
The role of fine-grained annotations in supervised recognition of risk factors for heart disease from EHRs.
J Biomed Inform. 2015 Dec;58 Suppl(Suppl):S111-S119. doi: 10.1016/j.jbi.2015.06.010. Epub 2015 Jun 26.
5
An automatic system to identify heart disease risk factors in clinical texts over time.
J Biomed Inform. 2015 Dec;58 Suppl(Suppl):S158-S163. doi: 10.1016/j.jbi.2015.09.002. Epub 2015 Sep 8.
6
Using local lexicalized rules to identify heart disease risk factors in clinical notes.
J Biomed Inform. 2015 Dec;58 Suppl(Suppl):S183-S188. doi: 10.1016/j.jbi.2015.06.013. Epub 2015 Jun 29.
7
Combining glass box and black box evaluations in the identification of heart disease risk factors and their temporal relations from clinical records.
J Biomed Inform. 2015 Dec;58 Suppl(Suppl):S133-S142. doi: 10.1016/j.jbi.2015.06.014. Epub 2015 Jul 2.
8
Adapting existing natural language processing resources for cardiovascular risk factors identification in clinical notes.
J Biomed Inform. 2015 Dec;58 Suppl(Suppl):S128-S132. doi: 10.1016/j.jbi.2015.08.002. Epub 2015 Aug 28.
9
Creation of a new longitudinal corpus of clinical narratives.
J Biomed Inform. 2015 Dec;58 Suppl(Suppl):S6-S10. doi: 10.1016/j.jbi.2015.09.018. Epub 2015 Oct 1.
10
Mining heart disease risk factors in clinical text with named entity recognition and distributional semantic models.
J Biomed Inform. 2015 Dec;58 Suppl(Suppl):S143-S149. doi: 10.1016/j.jbi.2015.08.009. Epub 2015 Aug 21.

引用本文的文献

1
A New Public Corpus for Clinical Section Identification: MedSecId.
Proc Int Conf Comput Ling. 2022 Oct;2022:3709-3721.
3
Ischemic Stroke Etiology Classification by Ensemble Consensus Modeling Using Electronic Health Records.
Res Sq. 2023 Oct 31:rs.3.rs-3367169. doi: 10.21203/rs.3.rs-3367169/v1.
7
Using Natural Language Processing to Measure and Improve Quality of Diabetes Care: A Systematic Review.
J Diabetes Sci Technol. 2021 May;15(3):553-560. doi: 10.1177/19322968211000831. Epub 2021 Mar 19.
10
Development of an automated phenotyping algorithm for hepatorenal syndrome.
J Biomed Inform. 2018 Apr;80:87-95. doi: 10.1016/j.jbi.2018.03.001. Epub 2018 Mar 9.

本文引用的文献

1
Practical applications for natural language processing in clinical research: The 2014 i2b2/UTHealth shared tasks.
J Biomed Inform. 2015 Dec;58 Suppl(Suppl):S1-S5. doi: 10.1016/j.jbi.2015.10.007. Epub 2015 Oct 24.
2
Identifying risk factors for heart disease over time: Overview of 2014 i2b2/UTHealth shared task Track 2.
J Biomed Inform. 2015 Dec;58 Suppl(Suppl):S67-S77. doi: 10.1016/j.jbi.2015.07.001. Epub 2015 Jul 22.
3
Evaluating temporal relations in clinical text: 2012 i2b2 Challenge.
J Am Med Inform Assoc. 2013 Sep-Oct;20(5):806-13. doi: 10.1136/amiajnl-2013-001628. Epub 2013 Apr 5.
4
Unified Medical Language System term occurrences in clinical notes: a large-scale corpus analysis.
J Am Med Inform Assoc. 2012 Jun;19(e1):e149-56. doi: 10.1136/amiajnl-2011-000744. Epub 2012 Apr 4.
5
Evaluating the state of the art in coreference resolution for electronic medical records.
J Am Med Inform Assoc. 2012 Sep-Oct;19(5):786-91. doi: 10.1136/amiajnl-2011-000784. Epub 2012 Feb 24.
6
2010 i2b2/VA challenge on concepts, assertions, and relations in clinical text.
J Am Med Inform Assoc. 2011 Sep-Oct;18(5):552-6. doi: 10.1136/amiajnl-2011-000203. Epub 2011 Jun 16.
7
Textractor: a hybrid system for medications and reason for their prescription extraction from clinical text documents.
J Am Med Inform Assoc. 2010 Sep-Oct;17(5):559-62. doi: 10.1136/jamia.2010.004028.
8
Extracting medical information from narrative patient records: the case of medication-related information.
J Am Med Inform Assoc. 2010 Sep-Oct;17(5):555-8. doi: 10.1136/jamia.2010.003962.
9
Linguistic approach for identification of medication names and related information in clinical narratives.
J Am Med Inform Assoc. 2010 Sep-Oct;17(5):549-54. doi: 10.1136/jamia.2010.004036.
10
Extracting Rx information from clinical narrative.
J Am Med Inform Assoc. 2010 Sep-Oct;17(5):536-9. doi: 10.1136/jamia.2010.003970.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验