Westhoff Peter, Gowik Udo
Institut für Entwicklungs- und Molekularbiologie der Pflanzen, Heinrich-Heine-Universität, Universitätsstrasse 1, D-40225 Düsseldorf, Germany.
Ann Bot. 2004 Jan;93(1):13-23. doi: 10.1093/aob/mch003. Epub 2003 Nov 26.
C4 photosynthesis is characterized by a division of labour between two different photosynthetic cell types, mesophyll and bundle-sheath cells. Relying on phosphoenolpyruvate carboxylase (PEPC) as the primary carboxylase in the mesophyll cells a CO2 pump is established in C4 plants that concentrates CO2 at the site of ribulose 1,5-bisphosphate carboxylase/oxygenase in the bundle-sheath cells. The C4 photosynthetic pathway evolved polyphyletically implying that the genes encoding the C4 PEPC originated from non-photosynthetic PEPC progenitor genes that were already present in the C3 ancestral species. The dicot genus Flaveria (Asteraceae) is a unique system in which to investigate the molcular changes that had to occur in order to adapt a C3 ancestral PEPC gene to the special conditions of C4 photosynthesis. Flaveria contains not only C3 and C4 species but also a large number of C3-C4 intermediates which vary to the degree in which C4 photosynthetic traits are expressed. The C4 PEPC gene of Flaveria trinervia, which is encoded by the ppcA gene class, is highly expressed but only in mesophyll cells. The encoded PEPC protein possesses the typical kinetic and regulatory features of a C4-type PEPC. The orthologous ppcA gene of the C3 species Flaveria pringlei encodes a typical non-photosynthetic, C3-type PEPC and is weakly expressed with no apparent cell or organ specificity. PEPCs of the ppcA type have been detected also in C3-C4 intermediate Flaveria species. These orthologous PEPCs have been used to determine the molecular basis for C4 enzyme characteristics and to understand their evolution. Comparative and functional analyses of the ppcA promoters from F. trinervia and F. pringlei make it possible to identity the cis-regulatory sequences for mesophyll-specific gene expression and to search for the corresponding trans-regulatory factors.
C4光合作用的特点是两种不同光合细胞类型(叶肉细胞和维管束鞘细胞)之间的分工。依靠磷酸烯醇式丙酮酸羧化酶(PEPC)作为叶肉细胞中的主要羧化酶,C4植物建立了一个二氧化碳泵,该泵将二氧化碳浓缩在维管束鞘细胞中1,5-二磷酸核酮糖羧化酶/加氧酶的作用位点。C4光合途径是多系进化的,这意味着编码C4 PEPC的基因起源于C3祖先物种中已经存在的非光合PEPC祖先基因。双子叶植物黄顶菊属(菊科)是一个独特的系统,可用于研究为使C3祖先PEPC基因适应C4光合作用的特殊条件而必须发生的分子变化。黄顶菊属不仅包含C3和C4物种,还包含大量C3-C4中间类型,它们在C4光合特性的表达程度上有所不同。黄顶菊的C4 PEPC基因由ppcA基因类编码,表达量很高,但仅在叶肉细胞中表达。编码的PEPC蛋白具有C4型PEPC的典型动力学和调节特征。C3物种普氏黄顶菊的直系同源ppcA基因编码一种典型的非光合C3型PEPC,表达较弱,没有明显的细胞或器官特异性。在C3-C4中间类型的黄顶菊物种中也检测到了ppcA类型的PEPC。这些直系同源PEPC已被用于确定C4酶特性的分子基础并了解其进化过程。对来自三脉叶黄顶菊和普氏黄顶菊的ppcA启动子进行比较和功能分析,有助于确定叶肉特异性基因表达的顺式调控序列,并寻找相应的反式调控因子。