Suppr超能文献

趋氧性中细菌带形成模型。

Model of bacterial band formation in aerotaxis.

作者信息

Mazzag B C, Zhulin I B, Mogilner A

机构信息

Department of Mathematics, Humboldt State University, Arcata, California 95521, USA.

出版信息

Biophys J. 2003 Dec;85(6):3558-74. doi: 10.1016/S0006-3495(03)74775-4.

Abstract

Aerotaxis is a particular form of "energy taxis". It is based on a largely elusive signal transduction machinery. In aerotaxis, oxygen dissolved in water plays the role of both attractant (at moderate concentrations) and repellent (at high and low concentrations). Cells swimming from favorable oxygen concentrations into regions with unfavorable concentrations increase the frequency of reversals, turn back into the favorable domain, and become effectively trapped there. At the same time, bacteria consume oxygen, creating an oxygen gradient. This behavior leads to a pattern formation phenomenon: bacteria self-organize into a dense band at a certain distance from the air-water interface. We incorporate experimental observations of the aerotactic bacterium, Azospirillum brasilense, into a mathematical model. The model consists of a system of differential equations describing swimming bacterial cells and diffusing oxygen. The cells' frequency of reversals depends on the concentration of oxygen and its time derivative while oxygen is depleted by the bacteria. We suggest a hypothetical model of energy sensing mediated by aerotactic receptors Aer and Tsr. Computer simulations and analysis of the model equations allow comparisons of theoretical and experimental results and provide insight into the mechanisms of bacterial pattern formation and underlying signal transduction machinery. We make testable predictions about position and density of the bacterial band.

摘要

趋氧性是“能量趋化性”的一种特殊形式。它基于一种很大程度上难以捉摸的信号转导机制。在趋氧性中,溶解在水中的氧气既充当吸引剂(在适度浓度下)又充当驱避剂(在高浓度和低浓度下)。从有利氧气浓度区域游向不利浓度区域的细胞会增加反转频率,转向回到有利区域,并有效地被困在那里。与此同时,细菌消耗氧气,形成氧气梯度。这种行为导致一种模式形成现象:细菌在距气 - 水界面一定距离处自组织成一条密集带。我们将趋氧细菌巴西固氮螺菌的实验观察结果纳入一个数学模型。该模型由一组描述游动细菌细胞和扩散氧气的微分方程组成。细胞的反转频率取决于氧气浓度及其时间导数,而氧气会被细菌消耗。我们提出了一个由趋氧受体Aer和Tsr介导的能量传感假设模型。对模型方程的计算机模拟和分析能够比较理论和实验结果,并深入了解细菌模式形成的机制以及潜在的信号转导机制。我们对细菌带的位置和密度做出了可检验的预测。

相似文献

1
Model of bacterial band formation in aerotaxis.
Biophys J. 2003 Dec;85(6):3558-74. doi: 10.1016/S0006-3495(03)74775-4.
2
Modeling aerotaxis band formation in Azospirillum brasilense.
BMC Microbiol. 2019 May 17;19(1):101. doi: 10.1186/s12866-019-1468-9.
3
Oxygen taxis and proton motive force in Azospirillum brasilense.
J Bacteriol. 1996 Sep;178(17):5199-204. doi: 10.1128/jb.178.17.5199-5204.1996.
4
How do bacteria avoid high oxygen concentrations?
Biosci Rep. 1997 Jun;17(3):335-42. doi: 10.1023/a:1027340813657.
5
Aerotaxis and other energy-sensing behavior in bacteria.
Annu Rev Microbiol. 1999;53:103-28. doi: 10.1146/annurev.micro.53.1.103.
7
Aerotactic response of Azospirillum brasilense.
J Bacteriol. 1982 Nov;152(2):643-9. doi: 10.1128/jb.152.2.643-649.1982.
8
Energy taxis is the dominant behavior in Azospirillum brasilense.
J Bacteriol. 2000 Nov;182(21):6042-8. doi: 10.1128/JB.182.21.6042-6048.2000.
9
Azospirillum brasilense Chemotaxis Depends on Two Signaling Pathways Regulating Distinct Motility Parameters.
J Bacteriol. 2016 May 27;198(12):1764-1772. doi: 10.1128/JB.00020-16. Print 2016 Jun 15.
10
Analysis of aerotactic band formation by Desulfovibrio desulfuricans in a stopped-flow diffusion chamber.
FEMS Microbiol Ecol. 2006 Feb;55(2):186-94. doi: 10.1111/j.1574-695X.2005.00024.x.

引用本文的文献

1
Escape motility of multicellular magnetotactic prokaryotes.
J R Soc Interface. 2024 Oct;21(219):20240310. doi: 10.1098/rsif.2024.0310. Epub 2024 Oct 16.
2
Bacterial bioconvection confers context-dependent growth benefits and is robust under varying metabolic and genetic conditions.
J Bacteriol. 2023 Oct 26;205(10):e0023223. doi: 10.1128/jb.00232-23. Epub 2023 Oct 3.
3
Collective self-optimization of communicating active particles.
Proc Natl Acad Sci U S A. 2021 Dec 7;118(49). doi: 10.1073/pnas.2111142118.
4
Chemotaxis in external fields: Simulations for active magnetic biological matter.
PLoS Comput Biol. 2019 Dec 19;15(12):e1007548. doi: 10.1371/journal.pcbi.1007548. eCollection 2019 Dec.
5
Effects of Substrate-Coating Materials on the Wound-Healing Process.
Materials (Basel). 2019 Aug 29;12(17):2775. doi: 10.3390/ma12172775.
6
Modeling aerotaxis band formation in Azospirillum brasilense.
BMC Microbiol. 2019 May 17;19(1):101. doi: 10.1186/s12866-019-1468-9.
7
Connecting single-cell properties to collective behavior in multiple wild isolates of the Enterobacter cloacae complex.
PLoS One. 2019 Apr 4;14(4):e0214719. doi: 10.1371/journal.pone.0214719. eCollection 2019.
8
Logarithmic sensing in aerotaxis.
NPJ Syst Biol Appl. 2017 Jan 19;3:16036. doi: 10.1038/npjsba.2016.36. eCollection 2017.
9
Gravireceptors in eukaryotes-a comparison of case studies on the cellular level.
NPJ Microgravity. 2017 Apr 28;3:13. doi: 10.1038/s41526-017-0018-8. eCollection 2017.

本文引用的文献

1
Perfect and near-perfect adaptation in a model of bacterial chemotaxis.
Biophys J. 2003 May;84(5):2943-56. doi: 10.1016/S0006-3495(03)70021-6.
2
Molecular information processing: lessons from bacterial chemotaxis.
J Biol Chem. 2002 Mar 22;277(12):9625-8. doi: 10.1074/jbc.R100066200. Epub 2002 Jan 4.
3
Multi-stage regulation, a key to reliable adaptive biochemical pathways.
Biophys J. 2001 Dec;81(6):3016-28. doi: 10.1016/S0006-3495(01)75942-5.
4
More than one way to sense chemicals.
J Bacteriol. 2001 Aug;183(16):4681-6. doi: 10.1128/JB.183.16.4681-4686.2001.
5
PAS domain residues involved in signal transduction by the Aer redox sensor of Escherichia coli.
Mol Microbiol. 2000 May;36(4):806-16. doi: 10.1046/j.1365-2958.2000.01910.x.
6
An ultrasensitive bacterial motor revealed by monitoring signaling proteins in single cells.
Science. 2000 Mar 3;287(5458):1652-5. doi: 10.1126/science.287.5458.1652.
7
Myoglobin-like aerotaxis transducers in Archaea and Bacteria.
Nature. 2000 Feb 3;403(6769):540-4. doi: 10.1038/35000570.
8
Aerotaxis and other energy-sensing behavior in bacteria.
Annu Rev Microbiol. 1999;53:103-28. doi: 10.1146/annurev.micro.53.1.103.
10
PAS domains: internal sensors of oxygen, redox potential, and light.
Microbiol Mol Biol Rev. 1999 Jun;63(2):479-506. doi: 10.1128/MMBR.63.2.479-506.1999.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验