Häder Donat-P, Braun Markus, Grimm Daniela, Hemmersbach Ruth
Erlangen-Nürnberg, Dept. Biol. Neue Str. 9, Emeritus from Friedrich-Alexander Universität, Möhrendorf, 91096 Germany.
Gravitational Biology, Universität Bonn, Kirschallee 1, Bonn, 53115 Germany.
NPJ Microgravity. 2017 Apr 28;3:13. doi: 10.1038/s41526-017-0018-8. eCollection 2017.
We have selected five evolutionary very different biological systems ranging from unicellular protists via algae and higher plants to human cells showing responses to the gravity vector of the Earth in order to compare their graviperception mechanisms. All these systems use a mass, which may either by a heavy statolith or the whole content of the cell heavier than the surrounding medium to operate on a gravireceptor either by exerting pressure or by pulling on a cytoskeletal element. In many cases the receptor seems to be a mechanosensitive ion channel activated by the gravitational force which allows a gated ion flux across the membrane when activated. This has been identified in many systems to be a calcium current, which in turn activates subsequent elements of the sensory transduction chain, such as calmodulin, which in turn results in the activation of ubiquitous enzymes, gene expression activation or silencing. Naturally, the subsequent responses to the gravity stimulus differ widely between the systems ranging from orientational movement and directed growth to physiological reactions and adaptation to the environmental conditions.
我们选择了五个在进化上差异很大的生物系统,从单细胞原生生物到藻类、高等植物,再到对地球重力向量有反应的人类细胞,以便比较它们的重力感知机制。所有这些系统都利用一个重物,它可以是一个沉重的平衡石,也可以是细胞中比周围介质重的全部内容物,通过施加压力或拉动细胞骨架元件作用于重力感受器。在许多情况下,感受器似乎是一个由重力激活的机械敏感离子通道,激活时允许离子通过门控跨膜流动。在许多系统中,这已被确定为钙电流,它反过来激活感觉转导链的后续元件,如钙调蛋白,进而导致普遍存在的酶的激活、基因表达的激活或沉默。自然地,不同系统对重力刺激的后续反应差异很大,从定向运动和定向生长到生理反应以及对环境条件的适应。