Suppr超能文献

在体内,大鼠小脑和皮质中的端粒会随着年龄增长而缩短。

Telomeres shorten with age in rat cerebellum and cortex in vivo.

作者信息

Flanary Barry E, Streit Wolfgang J

机构信息

Department of Neuroscience, University of Florida College of Medicine, Gainesville, Florida 32610, USA.

出版信息

J Anti Aging Med. 2003;6(4):299-308. doi: 10.1089/109454503323028894.

Abstract

Normal somatic cells have a finite replicative capacity. With each cell division, telomeres, the ends of linear chromosomes, progressively shorten until they reach a critical length, at which point the cells enter replicative senescence. Some cells maintain their telomeres by the action of the telomerase enzyme. Glia, particularly microglia, are the only adult cell type in the central nervous system (CNS) that exhibit a significant mitotic potential, and are thus susceptible to telomere shortening. Previous research in our laboratory has found that telomeres shorten in rat microglia with increasing time in vitro. Our current hypothesis is that telomeres shorten in rat brain in vivo with increasing age. Tissue samples of cerebellum and cortex were obtained from Sprague-Dawley rats of various ages. Genomic DNA and total protein was isolated from each sample for telomere length measurement via Southern blot analysis (up to 5 months) and telomerase activity measurement via TRAP analysis (up to 6 months), respectively. Telomere shortening occurs in vivo in both rat cerebellum and cortex from day 21 to approximately 5 months of age. Cortex samples possessed shorter telomeres than did cerebellum samples. The longest telomeres undergo the most dramatic shortening, while the shortest telomeres exhibit only slight attrition. Telomerase activity slowly increases from day 21 to approximately 6 months of age, with the cerebellum exhibiting higher activity than cortex in all instances. These results indicate that telomere shortening occurs in rat brain in vivo with increasing age, and that the low levels of telomerase activity present may be preferentially recruited to maintain the shortest telomeres while allowing the longer ones to shorten more rapidly. Since microglia are thought to be the only mature cells of the postnatal CNS undergoing appreciable cell division, we propose that the telomere shortening occurring in the adult rat brain with age can be largely attributed to microglial cell division. Our findings provide an impetus to further investigate the pattern of telomere length and telomerase activity that emerges with further aging in the rat brain.

摘要

正常体细胞具有有限的复制能力。随着每次细胞分裂,线性染色体末端的端粒会逐渐缩短,直至达到临界长度,此时细胞进入复制性衰老。一些细胞通过端粒酶的作用维持其端粒。神经胶质细胞,尤其是小胶质细胞,是中枢神经系统(CNS)中唯一具有显著有丝分裂潜能的成年细胞类型,因此易受端粒缩短的影响。我们实验室之前的研究发现,大鼠小胶质细胞中的端粒会随着体外培养时间的增加而缩短。我们目前的假设是,大鼠大脑中的端粒会随着年龄的增长而在体内缩短。从小鼠不同年龄段的Sprague-Dawley大鼠获取小脑和皮质的组织样本。分别从每个样本中分离出基因组DNA和总蛋白,通过Southern印迹分析(最长5个月)测量端粒长度,通过TRAP分析(最长6个月)测量端粒酶活性。从出生后第21天到大约5个月大,大鼠小脑和皮质中的端粒在体内都会缩短。皮质样本的端粒比小脑样本的端粒短。最长的端粒缩短最为显著,而最短的端粒仅表现出轻微磨损。端粒酶活性从出生后第21天到大约6个月大时缓慢增加,在所有情况下,小脑的活性都高于皮质。这些结果表明,大鼠大脑中的端粒会随着年龄的增长而在体内缩短,并且现有的低水平端粒酶活性可能会优先被募集来维持最短的端粒,同时允许较长的端粒更快地缩短。由于小胶质细胞被认为是出生后中枢神经系统中唯一经历明显细胞分裂的成熟细胞,我们提出成年大鼠大脑中随着年龄增长而发生的端粒缩短在很大程度上可归因于小胶质细胞的分裂。我们的研究结果为进一步研究大鼠大脑随着年龄进一步增长而出现的端粒长度和端粒酶活性模式提供了动力。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验