Suppr超能文献

黄素细胞色素P450 BM3中的氧激活与电子转移

Oxygen activation and electron transfer in flavocytochrome P450 BM3.

作者信息

Ost Tobias W B, Clark Jonathan, Mowat Christopher G, Miles Caroline S, Walkinshaw Malcolm D, Reid Graeme A, Chapman Stephen K, Daff Simon

机构信息

School of Chemistry, University of Edinburgh, West Mains Road, Edinburgh, EH9 3JJ.

出版信息

J Am Chem Soc. 2003 Dec 10;125(49):15010-20. doi: 10.1021/ja035731o.

Abstract

In flavocytochrome P450 BM3, there is a conserved phenylalanine residue at position 393 (Phe393), close to Cys400, the thiolate ligand to the heme. Substitution of Phe393 by Ala, His, Tyr, and Trp has allowed us to modulate the reduction potential of the heme, while retaining the structural integrity of the enzyme's active site. Substrate binding triggers electron transfer in P450 BM3 by inducing a shift from a low- to high-spin ferric heme and a 140 mV increase in the heme reduction potential. Kinetic analysis of the mutants indicated that the spin-state shift alone accelerates the rate of heme reduction (the rate determining step for overall catalysis) by 200-fold and that the concomitant shift in reduction potential is only responsible for a modest 2-fold rate enhancement. The second step in the P450 catalytic cycle involves binding of dioxygen to the ferrous heme. The stabilities of the oxy-ferrous complexes in the mutant enzymes were also analyzed using stopped-flow kinetics. These were found to be surprisingly stable, decaying to superoxide and ferric heme at rates of 0.01-0.5 s(-)(1). The stability of the oxy-ferrous complexes was greater for mutants with higher reduction potentials, which had lower catalytic turnover rates but faster heme reduction rates. The catalytic rate-determining step of these enzymes can no longer be the initial heme reduction event but is likely to be either reduction of the stabilized oxy-ferrous complex, i.e., the second flavin to heme electron transfer or a subsequent protonation event. Modulating the reduction potential of P450 BM3 appears to tune the two steps in opposite directions; the potential of the wild-type enzyme appears to be optimized to maximize the overall rate of turnover. The dependence of the visible absorption spectrum of the oxy-ferrous complex on the heme reduction potential is also discussed.

摘要

在黄素细胞色素P450 BM3中,393位存在一个保守的苯丙氨酸残基(Phe393),靠近Cys400,即血红素的硫醇盐配体。用丙氨酸、组氨酸、酪氨酸和色氨酸取代Phe393使我们能够调节血红素的还原电位,同时保持酶活性位点的结构完整性。底物结合通过诱导从低自旋到高自旋的铁血红素转变以及血红素还原电位增加140 mV来触发P450 BM3中的电子转移。对突变体的动力学分析表明,仅自旋态转变就使血红素还原速率(整体催化的速率决定步骤)加快了200倍,而还原电位的伴随转变仅导致适度的2倍速率增强。P450催化循环的第二步涉及双氧与亚铁血红素的结合。还使用停流动力学分析了突变酶中氧亚铁配合物的稳定性。发现这些配合物出奇地稳定,以0.01 - 0.5 s⁻¹的速率分解为超氧化物和铁血红素。对于具有较高还原电位的突变体,氧亚铁配合物的稳定性更高,这些突变体的催化周转率较低,但血红素还原速率较快。这些酶的催化速率决定步骤不再是最初的血红素还原事件,而可能是稳定的氧亚铁配合物的还原,即第二个黄素到血红素的电子转移或随后的质子化事件。调节P450 BM3的还原电位似乎在相反方向上调节这两个步骤;野生型酶的电位似乎经过优化以最大化整体周转率。还讨论了氧亚铁配合物的可见吸收光谱对血红素还原电位的依赖性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验