Xu Xiang, Liu Yunqing, Weiss Susan, Arnold Eddy, Sarafianos Stefan G, Ding Jianping
Key Laboratory of Proteomics, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yue-Yang Road, Shanghai 200031, China.
Nucleic Acids Res. 2003 Dec 15;31(24):7117-30. doi: 10.1093/nar/gkg916.
The causative agent of severe acute respiratory syndrome (SARS) is a previously unidentified coronavirus, SARS-CoV. The RNA-dependent RNA polymerase (RdRp) of SARS-CoV plays a pivotal role in viral replication and is a potential target for anti-SARS therapy. There is a lack of structural or biochemical data on any coronavirus polymerase. To provide insights into the structure and function of SARS-CoV RdRp, we have located its conserved motifs that are shared by all RdRps, and built a three-dimensional model of the catalytic domain. The structural model permits us to discuss the potential functional roles of the conserved motifs and residues in replication and their potential interactions with inhibitors of related enzymes. We predict important structural attributes of potential anti-SARS-CoV RdRp nucleotide analog inhibitors: hydrogen-bonding capability for the 2' and 3' groups of the sugar ring and C3' endo sugar puckering, and the absence of a hydrophobic binding pocket for non-nucleoside analog inhibitors similar to those observed in hepatitis C virus RdRp and human immunodeficiency virus type 1 reverse transcriptase. We propose that the clinically observed resistance of SARS to ribavirin is probably due to perturbation of the conserved motif A that controls rNTP binding and fidelity of polymerization. Our results suggest that designing anti-SARS therapies can benefit from successful experiences in design of other antiviral drugs. This work should also provide guidance for future biochemical experiments.
严重急性呼吸综合征(SARS)的病原体是一种此前未被识别的冠状病毒,即SARS-CoV。SARS-CoV的RNA依赖性RNA聚合酶(RdRp)在病毒复制中起关键作用,是抗SARS治疗的一个潜在靶点。目前尚无关于任何冠状病毒聚合酶的结构或生化数据。为深入了解SARS-CoV RdRp的结构和功能,我们确定了其与所有RdRp共有的保守基序,并构建了催化结构域的三维模型。该结构模型使我们能够讨论保守基序和残基在复制中的潜在功能作用,以及它们与相关酶抑制剂的潜在相互作用。我们预测了潜在的抗SARS-CoV RdRp核苷酸类似物抑制剂的重要结构特征:糖环2'和3'基团的氢键结合能力以及C3'内型糖折叠,并且不存在类似于丙型肝炎病毒RdRp和人类免疫缺陷病毒1型逆转录酶中观察到的非核苷类似物抑制剂的疏水结合口袋。我们提出,临床上观察到的SARS对利巴韦林的耐药性可能是由于控制rNTP结合和聚合保真度的保守基序A受到干扰。我们的结果表明,设计抗SARS疗法可借鉴其他抗病毒药物设计的成功经验。这项工作也应为未来的生化实验提供指导。