Suppr超能文献

确定胸部X光片的视图。

Determining the view of chest radiographs.

作者信息

Lehmann Thomas M, Güld O, Keysers Daniel, Schubert Henning, Kohnen Michael, Wein Berthold B

机构信息

Department of Medical Informatics, Aachen University of Technology (RWTH), Pauwelsstrasse 30, 52057 Aachen, Germany.

出版信息

J Digit Imaging. 2003 Sep;16(3):280-91. doi: 10.1007/s10278-003-1655-x. Epub 2003 Dec 15.

Abstract

Automatic identification of frontal (posteroanterior/anteroposterior) vs. lateral chest radiographs is an important preprocessing step in computer-assisted diagnosis, content-based image retrieval, as well as picture archiving and communication systems. Here, a new approach is presented. After the radiographs are reduced substantially in size, several distance measures are applied for nearest-neighbor classification. Leaving-one-out experiments were performed based on 1,867 radiographs from clinical routine. For comparison to existing approaches, subsets of 430 and 5 training images are also considered. The overall best correctness of 99.7% is obtained for feature images of 32 x 32 pixels, the tangent distance, and a 5-nearest-neighbor classification scheme. Applying the normalized cross correlation function, correctness yields still 99.6% and 99.3% for feature images of 32 x 32 and 8 x 8 pixel, respectively. Remaining errors are caused by image altering pathologies, metal artifacts, or other interferences with routine conditions. The proposed algorithm outperforms existing but sophisticated approaches and is easily implemented at the same time.

摘要

自动识别胸部正位(后前位/前后位)与侧位X线片是计算机辅助诊断、基于内容的图像检索以及图像存档与通信系统中的一个重要预处理步骤。在此,提出了一种新方法。在大幅缩小X线片尺寸后,应用多种距离度量进行最近邻分类。基于来自临床常规的1867张X线片进行留一法实验。为了与现有方法进行比较,还考虑了430张和5张训练图像的子集。对于32×32像素的特征图像、切线距离和5近邻分类方案,总体最佳正确率为99.7%。应用归一化互相关函数,对于32×32像素和8×8像素的特征图像,正确率分别仍为99.6%和99.3%。其余错误是由图像改变性病变、金属伪影或其他与常规情况的干扰引起的。所提出的算法优于现有的复杂方法,并且易于实现。

相似文献

1
Determining the view of chest radiographs.确定胸部X光片的视图。
J Digit Imaging. 2003 Sep;16(3):280-91. doi: 10.1007/s10278-003-1655-x. Epub 2003 Dec 15.
6
Interactive, computer-based pediatric chest atlas.交互式计算机辅助儿科胸部图谱。
Pediatr Emerg Care. 2012 Feb;28(2):145-7. doi: 10.1097/PEC.0b013e3182442eff.

引用本文的文献

5
Angular relational signature-based chest radiograph image view classification.基于角度关系特征的胸片视图分类。
Med Biol Eng Comput. 2018 Aug;56(8):1447-1458. doi: 10.1007/s11517-018-1786-3. Epub 2018 Jan 22.

本文引用的文献

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验