Poola Rahul Gowtham, Pl Lahari, Y Siva Sankar
Dept. of ECE, SRM University, AP, India.
Results Eng. 2023 Jun;18:101020. doi: 10.1016/j.rineng.2023.101020. Epub 2023 Mar 16.
Due to the augmented rise of COVID-19, clinical specialists are looking for fast faultless diagnosis strategies to restrict Covid spread while attempting to lessen the computational complexity. In this way, swift diagnosis techniques for COVID-19 with high precision can offer valuable aid to clinical specialists. RT- PCR test is an expensive and tedious COVID diagnosis technique in practice. Medical imaging is feasible to diagnose COVID-19 by X-ray chest radiography to get around the shortcomings of RT-PCR. Through a variety of Deep Transfer-learning models, this research investigates the potential of Artificial Intelligence -based early diagnosis of COVID-19 via X-ray chest radiographs. With 10,192 normal and 3616 Covid X-ray chest radiographs, the deep transfer-learning models are optimized to further the accurate diagnosis. The x-ray chest radiographs undergo a data augmentation phase before developing a modified dataset to train the Deep Transfer-learning models. The Deep Transfer-learning architectures are trained using the extracted features from the Feature Extraction stage. During training, the classification of X-ray Chest radiographs based on feature extraction algorithm values is converted into a feature label set containing the classified image data with a feature string value representing the number of edges detected after edge detection. The feature label set is further tested with the SVM, KNN, NN, Naive Bayes and Logistic Regression classifiers to audit the quality metrics of the proposed model. The quality metrics include accuracy, precision, F1 score, recall and AUC. The Inception-V3 dominates the six Deep Transfer-learning models, according to the assessment results, with a training accuracy of 84.79% and a loss function of 2.4%. The performance of Cubic SVM was superior to that of the other SVM classifiers, with an AUC score of 0.99, precision of 0.983, recall of 0.8977, accuracy of 95.8%, and F1 score of 0.9384. Cosine KNN fared better than the other KNN classifiers with an AUC score of 0.95, precision of 0.974, recall of 0.777, accuracy of 90.8%, and F1 score of 0.864. Wide NN fared better than the other NN classifiers with an AUC score of 0.98, precision of 0.975, recall of 0.907, accuracy of 95.5%, and F1 score of 0.939. According to the findings, SVM classifiers topped other classifiers in terms of performance indicators like accuracy, precision, recall, F1-score, and AUC. The SVM classifiers reported better mean optimal scores compared to other classifiers. The performance assessment metrics uncover that the proposed methodology can aid in preliminary COVID diagnosis.
由于新冠肺炎病例的激增,临床专家正在寻找快速准确的诊断策略,以限制新冠病毒的传播,同时试图降低计算复杂度。这样,高精度的新冠肺炎快速诊断技术可以为临床专家提供宝贵的帮助。在实际应用中,逆转录聚合酶链反应(RT-PCR)检测是一种昂贵且繁琐的新冠病毒诊断技术。通过胸部X光摄影进行医学成像来诊断新冠肺炎是可行的,以克服RT-PCR的缺点。本研究通过多种深度迁移学习模型,探讨了基于人工智能通过胸部X光片对新冠肺炎进行早期诊断的潜力。利用10192张正常胸部X光片和3616张新冠肺炎胸部X光片,对深度迁移学习模型进行优化,以实现更准确的诊断。在构建经过修改的数据集来训练深度迁移学习模型之前,对胸部X光片进行数据增强阶段。利用从特征提取阶段提取的特征对深度迁移学习架构进行训练。在训练过程中,基于特征提取算法值对胸部X光片的分类被转换为一个特征标签集,该集包含分类后的图像数据以及一个表示边缘检测后检测到的边缘数量的特征字符串值。进一步使用支持向量机(SVM)、K近邻算法(KNN)、神经网络(NN)、朴素贝叶斯和逻辑回归分类器对特征标签集进行测试,以评估所提出模型的质量指标。质量指标包括准确率、精确率、F1分数、召回率和曲线下面积(AUC)。根据评估结果,Inception-V3在六个深度迁移学习模型中表现最佳,训练准确率为84.79%,损失函数为2.4%。立方支持向量机(Cubic SVM)的性能优于其他支持向量机分类器,AUC得分为0.99,精确率为0.983,召回率为0.8977,准确率为95.8%,F1分数为0.9384。余弦K近邻算法(Cosine KNN)的表现优于其他K近邻算法分类器,AUC得分为0.95,精确率为0.974,召回率为0.777,准确率为90.8%,F1分数为0.864。宽神经网络(Wide NN)的表现优于其他神经网络分类器,AUC得分为0.98,精确率为0.975,召回率为0.907,准确率为95.5%,F1分数为0.939。根据研究结果,在准确率、精确率、召回率、F1分数和AUC等性能指标方面,支持向量机分类器优于其他分类器。与其他分类器相比,支持向量机分类器的平均最优分数更高。性能评估指标表明,所提出的方法有助于新冠肺炎的初步诊断。