Department of Computer Science, The University of South Dakota, 414 E Clark St., Vermillion, SD, 57069, USA.
LIPADE, Université Paris Descartes (Paris V), 45 rue des Saints-Pères, 75270, Paris Cedex 06, France.
Med Biol Eng Comput. 2018 Aug;56(8):1447-1458. doi: 10.1007/s11517-018-1786-3. Epub 2018 Jan 22.
In a computer-aided diagnosis (CAD) system, especially for chest radiograph or chest X-ray (CXR) screening, CXR image view information is required. Automatically separating CXR image view, frontal and lateral can ease subsequent CXR screening process, since the techniques may not equally work for both views. We present a novel technique to classify frontal and lateral CXR images, where we introduce angular relational signature through force histogram to extract features and apply three different state-of-the-art classifiers: multi-layer perceptron, random forest, and support vector machine to make a decision. We validated our fully automatic technique on a set of 8100 images hosted by the U.S. National Library of Medicine (NLM), National Institutes of Health (NIH), and achieved an accuracy close to 100%. Our method outperforms the state-of-the-art methods in terms of processing time (less than or close to 2 s for the whole test data) while the accuracies can be compared, and therefore, it justifies its practicality. Graphical Abstract Interpreting chest X-ray (CXR) through the angular relational signature.
在计算机辅助诊断 (CAD) 系统中,特别是在胸部 X 光 (CXR) 筛查中,需要 CXR 图像视图信息。自动分离 CXR 图像的前后视图可以简化后续的 CXR 筛查过程,因为这些技术可能不适用于两种视图。我们提出了一种新的技术来对前后 CXR 图像进行分类,我们通过力直方图引入角度关系签名来提取特征,并应用三种不同的最先进的分类器:多层感知机、随机森林和支持向量机来做出决策。我们在由美国国立卫生研究院 (NIH) 国家医学图书馆 (NLM) 托管的 8100 张图像数据集上验证了我们的全自动技术,准确率接近 100%。我们的方法在处理时间(整个测试数据的时间少于或接近 2 秒)方面优于最先进的方法,同时可以比较准确率,因此证明了其实用性。