Suppr超能文献

WSC家族和Mid2p细胞表面传感器的异常加工导致酿酒酵母O-甘露糖基化突变体的细胞死亡。

Aberrant processing of the WSC family and Mid2p cell surface sensors results in cell death of Saccharomyces cerevisiae O-mannosylation mutants.

作者信息

Lommel Mark, Bagnat Michel, Strahl Sabine

机构信息

Institute of Cell Biology and Plant Physiology, University of Regensburg, 93040 Regensburg. Max Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany.

出版信息

Mol Cell Biol. 2004 Jan;24(1):46-57. doi: 10.1128/MCB.24.1.46-57.2004.

Abstract

Protein O mannosylation is a crucial protein modification in uni- and multicellular eukaryotes. In humans, a lack of O-mannosyl glycans causes congenital muscular dystrophies that are associated with brain abnormalities. In yeast, protein O mannosylation is vital; however, it is not known why impaired O mannosylation results in cell death. To address this question, we analyzed the conditionally lethal Saccharomyces cerevisiae protein O-mannosyltransferase pmt2 pmt4Delta mutant. We found that pmt2 pmt4Delta cells lyse as small-budded cells in the absence of osmotic stabilization and that treatment with mating pheromone causes pheromone-induced cell death. These phenotypes are partially suppressed by overexpression of upstream elements of the protein kinase C (PKC1) cell integrity pathway, suggesting that the PKC1 pathway is defective in pmt2 pmt4Delta mutants. Congruently, induction of Mpk1p/Slt2p tyrosine phosphorylation does not occur in pmt2 pmt4Delta mutants during exposure to mating pheromone or elevated temperature. Detailed analyses of the plasma membrane sensors of the PKC1 pathway revealed that Wsc1p, Wsc2p, and Mid2p are aberrantly processed in pmt mutants. Our data suggest that in yeast, O mannosylation increases the activity of Wsc1p, Wsc2p, and Mid2p by enhancing their stability. Reduced O mannosylation leads to incorrect proteolytic processing of these proteins, which in turn results in impaired activation of the PKC1 pathway and finally causes cell death in the absence of osmotic stabilization.

摘要

蛋白质O-甘露糖基化是单细胞和多细胞真核生物中一种关键的蛋白质修饰。在人类中,缺乏O-甘露糖聚糖会导致与脑异常相关的先天性肌营养不良。在酵母中,蛋白质O-甘露糖基化至关重要;然而,尚不清楚O-甘露糖基化受损为何会导致细胞死亡。为了解决这个问题,我们分析了条件致死的酿酒酵母蛋白质O-甘露糖基转移酶pmt2 pmt4Δ突变体。我们发现,在没有渗透稳定作用的情况下,pmt2 pmt4Δ细胞会以小芽殖细胞的形式裂解,并且用交配信息素处理会导致信息素诱导的细胞死亡。这些表型被蛋白激酶C(PKC1)细胞完整性途径上游元件的过表达部分抑制,这表明PKC1途径在pmt2 pmt4Δ突变体中存在缺陷。同样,在暴露于交配信息素或高温期间,pmt2 pmt4Δ突变体中不会发生Mpk1p/Slt2p酪氨酸磷酸化的诱导。对PKC1途径的质膜传感器的详细分析表明,Wsc1p、Wsc2p和Mid2p在pmt突变体中被异常加工。我们的数据表明,在酵母中,O-甘露糖基化通过增强Wsc1p、Wsc2p和Mid2p的稳定性来增加它们的活性。O-甘露糖基化减少导致这些蛋白质的蛋白水解加工不正确,进而导致PKC1途径的激活受损,最终在没有渗透稳定作用的情况下导致细胞死亡。

相似文献

引用本文的文献

1
Letting go of -glycans.释放聚糖。
J Biol Chem. 2019 Nov 1;294(44):15912-15913. doi: 10.1074/jbc.H119.011245.
6
Vps74 Connects the Golgi Apparatus and Telomeres in .Vps74在……中连接高尔基体和端粒。
G3 (Bethesda). 2018 May 4;8(5):1807-1816. doi: 10.1534/g3.118.200172.

本文引用的文献

6
Dynamics of cell wall structure in Saccharomyces cerevisiae.酿酒酵母细胞壁结构的动态变化
FEMS Microbiol Rev. 2002 Aug;26(3):239-56. doi: 10.1111/j.1574-6976.2002.tb00613.x.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验