Suppr超能文献

单次试验多成分事件相关电位的估计:差异可变成分分析(dVCA)。

Estimation of single-trial multicomponent ERPs: differentially variable component analysis (dVCA).

作者信息

Truccolo Wilson, Knuth Kevin H, Shah Ankoor, Bressler Steven L, Schroeder Charles E, Ding Mingzhou

机构信息

Department of Neuroscience, Brown University, 190 Thayer Street, Providence, RI 02912, USA.

出版信息

Biol Cybern. 2003 Dec;89(6):426-38. doi: 10.1007/s00422-003-0433-7. Epub 2003 Dec 4.

Abstract

A Bayesian inference framework for estimating the parameters of single-trial, multicomponent, event-related potentials is presented. Single-trial recordings are modeled as the linear combination of ongoing activity and multicomponent waveforms that are relatively phase-locked to certain sensory or motor events. Each component is assumed to have a trial-invariant waveform with trial-dependent amplitude scaling factors and latency shifts. A Maximum a Posteriori solution of this model is implemented via an iterative algorithm from which the component's waveform, single-trial amplitude scaling factors and latency shifts are estimated. Multiple components can be derived from a single-channel recording based on their differential variability, an aspect in contrast with other component analysis techniques (e.g., independent component analysis) where the number of components estimated is equal to or smaller than the number of recording channels. Furthermore, we show that, by subtracting out the estimated single-trial components from each of the single-trial recordings, one can estimate the ongoing activity, thus providing additional information concerning task-related brain dynamics. We test this approach, which we name differentially variable component analysis (dVCA), on simulated data and apply it to an experimental dataset consisting of intracortically recorded local field potentials from monkeys performing a visuomotor pattern discrimination task.

摘要

本文提出了一种用于估计单次试验、多成分、事件相关电位参数的贝叶斯推理框架。单次试验记录被建模为持续活动和多成分波形的线性组合,这些波形相对锁相于某些感觉或运动事件。假设每个成分具有试验不变的波形,以及与试验相关的幅度缩放因子和潜伏期偏移。通过迭代算法实现该模型的最大后验解,从中估计成分的波形、单次试验幅度缩放因子和潜伏期偏移。基于其差异变异性,可以从单通道记录中导出多个成分,这一点与其他成分分析技术(例如独立成分分析)不同,在其他技术中估计的成分数量等于或小于记录通道的数量。此外,我们表明,通过从每个单次试验记录中减去估计的单次试验成分,可以估计持续活动,从而提供有关任务相关脑动力学的额外信息。我们在模拟数据上测试了这种我们称为差异可变成分分析(dVCA)的方法,并将其应用于一个实验数据集,该数据集由执行视觉运动模式辨别任务的猴子的皮质内记录的局部场电位组成。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验