University of Münster, Germany.
Leibniz Institute for Neurobiology, Magdeburg, Germany; Leipzig University, Germany.
Dev Cogn Neurosci. 2022 Apr;54:101072. doi: 10.1016/j.dcn.2022.101072. Epub 2022 Jan 15.
Developmental researchers are often interested in event-related potentials (ERPs). Data-analytic approaches based on the observed ERP suffer from major problems such as arbitrary definition of analysis time windows and regions of interest and the observed ERP being a mixture of latent underlying components. Temporal principal component analysis (PCA) can reduce these problems. However, its application in developmental research comes with the unique challenge that the component structure differs between age groups (so-called measurement non-invariance). Separate PCAs for the groups can cope with this challenge. We demonstrate how to make results from separate PCAs accessible for inferential statistics by re-scaling to original units. This tutorial enables readers with a focus on developmental research to conduct a PCA-based ERP analysis of amplitude differences. We explain the benefits of a PCA-based approach, introduce the PCA model and demonstrate its application to a developmental research question using real-data from a child and an adult group (code and data openly available). Finally, we discuss how to cope with typical challenges during the analysis and name potential limitations such as suboptimal decomposition results, data-driven analysis decisions and latency shifts.
发展研究人员通常对事件相关电位(ERP)感兴趣。基于观察到的 ERP 的数据分析方法存在主要问题,例如分析时间窗口和感兴趣区域的任意定义,以及观察到的 ERP 是潜在潜在成分的混合。时间主成分分析(PCA)可以减少这些问题。然而,它在发展研究中的应用带来了独特的挑战,即组件结构在不同年龄组之间存在差异(所谓的测量不变性)。针对这些组分别进行 PCA 可以应对这一挑战。我们展示了如何通过重新缩放回原始单位,使组间的 PCA 的结果可用于推理统计。本教程使专注于发展研究的读者能够对振幅差异进行基于 PCA 的 ERP 分析。我们解释了基于 PCA 的方法的优势,介绍了 PCA 模型,并使用来自儿童和成人组的真实数据(代码和数据公开可用)演示了其在发展研究问题中的应用。最后,我们讨论了在分析过程中如何应对典型挑战,并指出了潜在的限制,例如分解结果不理想、数据驱动的分析决策和潜伏期偏移。