Bollimunta Anil, Knuth Kevin H, Ding Mingzhou
J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL 32611, USA.
J Neurosci Methods. 2007 Feb 15;160(1):163-70. doi: 10.1016/j.jneumeth.2006.08.007. Epub 2006 Sep 25.
The rate function underlying single-trial spike trains can vary from trial to trial. We propose to estimate the amplitude and latency variability in single-trial neuronal spike trains on a trial-by-trial basis. The firing rate over a trial is modeled by a family of rate profiles with trial-invariant waveform and trial-dependent amplitude scaling factors and latency shifts. Using a Bayesian inference framework we derive an iterative fixed-point algorithm from which the single-trial amplitude scaling factors and latency shifts are estimated. We test the performance of the algorithm on simulated data and then apply it to actual neuronal recordings from the sensorimotor cortex of the monkey.
单次试验尖峰序列背后的速率函数可能在每次试验中有所不同。我们建议逐次试验地估计单次试验神经元尖峰序列中的幅度和潜伏期变异性。一次试验中的发放率由一族速率分布来建模,这些速率分布具有试验不变的波形以及与试验相关的幅度缩放因子和潜伏期偏移。使用贝叶斯推理框架,我们推导出一种迭代定点算法,通过该算法可以估计单次试验的幅度缩放因子和潜伏期偏移。我们在模拟数据上测试了该算法的性能,然后将其应用于来自猴子感觉运动皮层的实际神经元记录。