Suppr超能文献

β-葡萄糖基化作为委内瑞拉链霉菌(methymycin/pikromycin产生菌)自身抗性机制的一部分。

Beta-glucosylation as a part of self-resistance mechanism in methymycin/pikromycin producing strain Streptomyces venezuelae.

作者信息

Zhao Lishan, Beyer Noelle J, Borisova Svetlana A, Liu Hung-wen

机构信息

Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, USA.

出版信息

Biochemistry. 2003 Dec 23;42(50):14794-804. doi: 10.1021/bi035501m.

Abstract

In our study of the biosynthesis of D-desosamine in Streptomyces venezuelae, we have cloned and sequenced the entire desosamine biosynthetic cluster. The deduced product of one of the genes, desR, in this cluster shows high sequence homology to beta-glucosidases, which catalyze the hydrolysis of the glycosidic linkages, a function not required for the biosynthesis of desosamine. Disruption of the desR gene led to the accumulation of glucosylated methymycin/neomethymycin products, all of which are biologically inactive. It is thus conceivable that methymycin/neomethymycin may be produced as inert diglycosides, and the DesR protein is responsible for transforming these antibiotics from their dormant to their active forms. This hypothesis is supported by the fact that the translated desR gene has a leader sequence characteristic of secretory proteins, allowing it to be transported through the cell membrane and hydrolyze the modified antibiotics extracellularly to activate them. Expression of desR and biochemical characterization of the purified protein confirmed the catalytic function of this enzyme as a beta-glycosidase capable of catalyzing the hydrolysis of glucosylated methymycin/neomethymycin produced by S. venezuelae. These results provide strong evidence substantiating glycosylation/deglycosylation as a likely self-resistance mechanism of S. venezuelae. However, further experiments have suggested that such a glycosylation/deglycosylation is only a secondary self-defense mechanism in S. venezuelae, whereas modification of 23S rRNA, which is the target site for methymycin and its derivatives, by PikR1 and PikR2 is a primary self-resistance mechanism. Considering that postsynthetic glycosylation is an effective means to control the biological activity of macrolide antibiotics, the availability of macrolide glycosidases, which can be used for the activation of newly formed antibiotics that have been deliberately deactivated by engineered glycosyltransferases, may be a valuable part of an overall strategy for the development of novel antibiotics using the combinatorial biosynthetic approach.

摘要

在我们对委内瑞拉链霉菌中去氧糖胺生物合成的研究中,我们克隆并测序了整个去氧糖胺生物合成基因簇。该基因簇中一个基因desR的推导产物与β-葡萄糖苷酶具有高度的序列同源性,β-葡萄糖苷酶催化糖苷键的水解,而去氧糖胺生物合成不需要这种功能。desR基因的破坏导致糖基化的美他霉素/新美他霉素产物的积累,所有这些产物均无生物活性。因此可以想象,美他霉素/新美他霉素可能以惰性双糖苷的形式产生,而DesR蛋白负责将这些抗生素从休眠形式转化为活性形式。这一假设得到以下事实的支持:翻译后的desR基因具有分泌蛋白特有的前导序列,使其能够穿过细胞膜并在细胞外水解修饰后的抗生素以激活它们。desR的表达和纯化蛋白的生化特性证实了该酶作为一种β-糖苷酶的催化功能,能够催化委内瑞拉链霉菌产生的糖基化美他霉素/新美他霉素的水解。这些结果提供了有力证据,证实糖基化/去糖基化可能是委内瑞拉链霉菌的一种自我抗性机制。然而,进一步的实验表明,这种糖基化/去糖基化在委内瑞拉链霉菌中只是一种次要的自我防御机制,而PikR1和PikR2对23S rRNA(美他霉素及其衍生物的作用靶点)的修饰是主要的自我抗性机制。考虑到合成后糖基化是控制大环内酯类抗生素生物活性的有效手段,大环内酯糖苷酶的可用性可用于激活由工程化糖基转移酶故意使其失活的新形成的抗生素,这可能是使用组合生物合成方法开发新型抗生素的整体策略中的一个有价值的部分。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验