Suppr超能文献

雄性和雌性发声运动神经元的功能特化。

Functional specialization of male and female vocal motoneurons.

作者信息

Yamaguchi Ayako, Kaczmarek Leonard K, Kelley Darcy B

机构信息

Department of Biological Sciences, Columbia University, New York, New York 10027, USA.

出版信息

J Neurosci. 2003 Dec 17;23(37):11568-76. doi: 10.1523/JNEUROSCI.23-37-11568.2003.

Abstract

Vocal behaviors of African clawed frogs (Xenopus laevis) are produced by a single pair of muscles. This simplification, relative to other vertebrates, allows us to more easily determine how CNS motor pathways function to produce sex-specific songs. We describe here certain sexually differentiated properties of vocal motoneurons that are matched to male and female vocal demands. Both active and passive membrane properties differ between the sexes. Male motoneurons have lower input resistances and larger membrane capacitances than female motoneurons. Two distinct firing patterns are found, in different proportions, in males and females. The strongly adapting neurons that predominate in males initiate spikes at short, reliable latencies, whereas the weakly adapting motoneurons characteristic of females translate graded levels of depolarization into different firing rates. Low-threshold potassium currents (IKL) predominate in males. Hyperpolarization-activated cationic currents (IH) are found almost exclusively in males. Modeling results indicate that sex-typical active and passive properties can account for the occurrence of strongly and weakly adapting spike trains in the sexes. In particular, IKL seem to play an important role in determining the firing patterns of neurons. We suggest that these physiological differences facilitate transformation of synaptic inputs into male- and female-specific outputs that generate sexually distinct songs in vivo.

摘要

非洲爪蟾(非洲爪蟾)的发声行为由一对肌肉产生。相对于其他脊椎动物而言,这种简化使我们能够更轻松地确定中枢神经系统运动通路如何发挥作用以产生性别特异性歌声。我们在此描述了与雄性和雌性发声需求相匹配的发声运动神经元的某些性别差异特性。两性之间的主动和被动膜特性均有所不同。雄性运动神经元的输入电阻低于雌性运动神经元,而膜电容则大于雌性运动神经元。在雄性和雌性中发现了两种不同比例的放电模式。在雄性中占主导地位的强适应性神经元以短且可靠的潜伏期引发动作电位,而雌性特有的弱适应性运动神经元则将不同程度的去极化转化为不同的放电频率。低阈值钾电流(IKL)在雄性中占主导地位。超极化激活的阳离子电流(IH)几乎仅在雄性中发现。建模结果表明,性别典型的主动和被动特性可以解释两性中强适应性和弱适应性动作电位序列的出现。特别是,IKL似乎在确定神经元的放电模式中起重要作用。我们认为,这些生理差异有助于将突触输入转化为雄性和雌性特异性输出,从而在体内产生性别不同的歌声。

相似文献

1
Functional specialization of male and female vocal motoneurons.
J Neurosci. 2003 Dec 17;23(37):11568-76. doi: 10.1523/JNEUROSCI.23-37-11568.2003.
5
Androgen-induced vocal transformation in adult female African clawed frogs.
J Neurophysiol. 2005 Jul;94(1):415-28. doi: 10.1152/jn.01279.2004. Epub 2005 Mar 9.
6
Neuroeffectors for vocalization in Xenopus laevis: hormonal regulation of sexual dimorphism.
J Neurobiol. 1986 May;17(3):231-48. doi: 10.1002/neu.480170307.
8
Sexually distinct development of vocal pathways in Xenopus laevis.
Dev Neurobiol. 2010 Nov;70(13):862-74. doi: 10.1002/dneu.20822.
9
Regulation of respiratory and vocal motor pools in the isolated brain of Xenopus laevis.
J Neurosci. 2008 Jan 16;28(3):612-21. doi: 10.1523/JNEUROSCI.4754-07.2008.
10
Enhanced Activation of HCN Channels Reduces Excitability and Spike-Timing Regularity in Maturing Vestibular Afferent Neurons.
J Neurosci. 2019 Apr 10;39(15):2860-2876. doi: 10.1523/JNEUROSCI.1811-18.2019. Epub 2019 Jan 29.

引用本文的文献

1
Characterization of laryngeal motor neuron properties in the American bullfrog, Lithobates catesbieanus.
Respir Physiol Neurobiol. 2021 Dec;294:103745. doi: 10.1016/j.resp.2021.103745. Epub 2021 Jul 21.
2
Molecular characterization of frog vocal neurons using constellation pharmacology.
J Neurophysiol. 2020 Jun 1;123(6):2297-2310. doi: 10.1152/jn.00105.2020. Epub 2020 May 6.
3
Neuroanatomical and neurophysiological mechanisms of acoustic and weakly electric signaling in synodontid catfish.
J Comp Neurol. 2020 Oct 15;528(15):2602-2619. doi: 10.1002/cne.24920. Epub 2020 Apr 21.
4
Sex differences in vocalization are reflected by event-related potential components in the music frog.
Anim Cogn. 2020 May;23(3):477-490. doi: 10.1007/s10071-020-01350-x. Epub 2020 Feb 3.
5
Development of an Acute Method to Deliver Transgenes Into the Brains of Adult .
Front Neural Circuits. 2018 Oct 26;12:92. doi: 10.3389/fncir.2018.00092. eCollection 2018.
8
A neuroendocrine basis for the hierarchical control of frog courtship vocalizations.
Front Neuroendocrinol. 2011 Aug;32(3):353-66. doi: 10.1016/j.yfrne.2010.12.006. Epub 2010 Dec 28.
9
Vocal pathway degradation in gonadectomized Xenopus laevis adults.
J Neurophysiol. 2011 Feb;105(2):601-14. doi: 10.1152/jn.00883.2010. Epub 2010 Dec 8.
10
Neurobiology of vocal communication: mechanisms for sensorimotor integration and vocal patterning.
Curr Opin Neurobiol. 2010 Dec;20(6):748-53. doi: 10.1016/j.conb.2010.08.007. Epub 2010 Sep 9.

本文引用的文献

1
Vocal communication between male .
Anim Behav. 2004 Feb 1;67(2):353-365. doi: 10.1016/j.anbehav.2003.03.016. Epub 2003 Dec 29.
2
Activity-independent homeostasis in rhythmically active neurons.
Neuron. 2003 Jan 9;37(1):109-20. doi: 10.1016/s0896-6273(02)01104-2.
3
An ultra-sparse code underlies the generation of neural sequences in a songbird.
Nature. 2002 Sep 5;419(6902):65-70. doi: 10.1038/nature00974.
5
Evolution and development of time coding systems.
Curr Opin Neurobiol. 2001 Dec;11(6):727-33. doi: 10.1016/s0959-4388(01)00276-8.
6
Central pattern generators and the control of rhythmic movements.
Curr Biol. 2001 Nov 27;11(23):R986-96. doi: 10.1016/s0960-9822(01)00581-4.
7
Global structure, robustness, and modulation of neuronal models.
J Neurosci. 2001 Jul 15;21(14):5229-38. doi: 10.1523/JNEUROSCI.21-14-05229.2001.
8
Integrated allosteric model of voltage gating of HCN channels.
J Gen Physiol. 2001 Jun;117(6):519-32. doi: 10.1085/jgp.117.6.519.
10
Casein kinase 2 determines the voltage dependence of the Kv3.1 channel in auditory neurons and transfected cells.
J Neurosci. 2001 Feb 15;21(4):1160-8. doi: 10.1523/JNEUROSCI.21-04-01160.2001.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验