Suppr超能文献

细胞运动和趋化性的随机模型。

Stochastic models for cell motion and taxis.

作者信息

Ionides Edward L, Fang Kathy S, Isseroff R Rivkah, Oster George F

机构信息

Department of Statistics, University of Michigan, Ann Arbor, MI 48109, USA.

出版信息

J Math Biol. 2004 Jan;48(1):23-37. doi: 10.1007/s00285-003-0220-z. Epub 2003 Aug 6.

Abstract

Certain biological experiments investigating cell motion result in time lapse video microscopy data which may be modeled using stochastic differential equations. These models suggest statistics for quantifying experimental results and testing relevant hypotheses, and carry implications for the qualitative behavior of cells and for underlying biophysical mechanisms. Directional cell motion in response to a stimulus, termed taxis, has previously been modeled at a phenomenological level using the Keller-Segel diffusion equation. The Keller-Segel model cannot distinguish certain modes of taxis, and this motivates the introduction of a richer class of models which is nevertheless still amenable to statistical analysis. A state space model formulation is used to link models proposed for cell velocity to observed data. Sequential Monte Carlo methods enable parameter estimation via maximum likelihood for a range of applicable models. One particular experimental situation, involving the effect of an electric field on cell behavior, is considered in detail. In this case, an Ornstein- Uhlenbeck model for cell velocity is found to compare favorably with a nonlinear diffusion model.

摘要

某些研究细胞运动的生物学实验会产生延时视频显微镜数据,这些数据可用随机微分方程进行建模。这些模型为量化实验结果和检验相关假设提供了统计方法,并对细胞的定性行为和潜在的生物物理机制具有启示意义。细胞对刺激的定向运动,即趋化性,此前已在现象学层面上使用凯勒-西格尔扩散方程进行建模。凯勒-西格尔模型无法区分某些趋化模式,这促使引入一类更丰富的模型,这类模型仍然适合进行统计分析。使用状态空间模型公式将为细胞速度提出的模型与观测数据联系起来。序贯蒙特卡罗方法能够通过最大似然估计对一系列适用模型进行参数估计。详细考虑了一种特定的实验情况,即电场对细胞行为的影响。在这种情况下,发现细胞速度的奥恩斯坦-乌伦贝克模型与非线性扩散模型相比具有优势。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验