Suppr超能文献

一种用于黏附介导的细胞随机运动和趋触性的随机模型。

A stochastic model for adhesion-mediated cell random motility and haptotaxis.

作者信息

Dickinson R B, Tranquillo R T

机构信息

Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis 55455.

出版信息

J Math Biol. 1993;31(6):563-600. doi: 10.1007/BF00161199.

Abstract

The active migration of blood and tissue cells is important in a number of physiological processes including inflammation, wound healing, embryogenesis, and tumor cell metastasis. These cells move by transmitting cytoplasmic force through membrane receptors which are bound specifically to adhesion ligands in the surrounding substratum. Recently, much research has focused on the influence of the composition of extracellular matrix and the distribution of its components on the speed and direction of cell migration. It is commonly believed that the magnitude of the adhesion influences cell speed and/or random turning behavior, whereas a gradient of adhesion may bias the net direction of the cell movement, a phenomenon known as haptotaxis. The mechanisms underlying these responses are presently not understood. A stochastic model is presented to provide a mechanistic understanding of how the magnitude and distribution of adhesion ligands in the substratum influence cell movement. The receptor-mediated cell migration is modeled as an interrelation of random processes on distinct time scales. Adhesion receptors undergo rapid binding and transport, resulting in a stochastic spatial distribution of bound receptors fluctuating about some mean distribution. This results in a fluctuating spatio-temporal pattern of forces on the cell, which in turn affects the speed and turning behavior on a longer time scale. The model equations are a system of nonlinear stochastic differential equations (SDE's) which govern the time evolution of the spatial distribution of bound and free receptors, and the orientation and position of the cell. These SDE's are integrated numerically to simulate the behavior of the model cell on both a uniform substratum, and on a gradient of adhesion ligand concentration. Furthermore, analysis of the governing SDE system and corresponding Fokker-Planck equation (FPE) yields analytical expressions for indices which characterize cell movement on multiple time scales in terms of cell cytomechanical, morphological, and receptor binding and transport parameters. For a uniform adhesion ligand concentration, this analysis provides expressions for traditional cell movement indices such as mean speed, directional persistence time, and random motility coefficient. In a small gradient of adhesion, a perturbation analysis of the FPE yields a constitutive cell flux expression which includes a drift term for haptotactic directional cell migration. The haptotactic drift contains terms identified as contributions from directional orientation bias (taxis), kinesis, and orthotaxis, of which taxis appears to be predominant given estimates of the model parameters.

摘要

血液和组织细胞的主动迁移在许多生理过程中都很重要,包括炎症、伤口愈合、胚胎发育和肿瘤细胞转移。这些细胞通过膜受体传递细胞质力来移动,膜受体与周围基质中的黏附配体特异性结合。最近,许多研究集中在细胞外基质的组成及其成分的分布对细胞迁移速度和方向的影响上。人们普遍认为,黏附的强度会影响细胞速度和/或随机转向行为,而黏附梯度可能会使细胞运动的净方向产生偏差,这种现象称为趋触性。目前尚不清楚这些反应背后的机制。本文提出了一个随机模型,以从机制上理解基质中黏附配体的强度和分布如何影响细胞运动。受体介导的细胞迁移被建模为不同时间尺度上随机过程的相互关系。黏附受体经历快速结合和运输,导致结合受体的随机空间分布围绕某个平均分布波动。这导致细胞上力的时空模式波动,进而在更长的时间尺度上影响速度和转向行为。模型方程是一组非线性随机微分方程(SDE),用于控制结合和游离受体的空间分布以及细胞的方向和位置随时间的演变。这些SDE通过数值积分来模拟模型细胞在均匀基质和黏附配体浓度梯度上的行为。此外,对控制SDE系统和相应的福克 - 普朗克方程(FPE)的分析得出了一些指标的解析表达式,这些指标根据细胞的细胞力学、形态学以及受体结合和运输参数来表征细胞在多个时间尺度上的运动。对于均匀的黏附配体浓度,该分析提供了传统细胞运动指标的表达式,如平均速度、方向持续时间和随机运动系数。在较小的黏附梯度下,对FPE的微扰分析得出了一个本构细胞通量表达式,其中包括趋触性定向细胞迁移的漂移项。趋触性漂移包含被确定为来自定向偏差(趋化性)、运动性和正趋化性贡献的项,根据模型参数的估计,趋化性似乎是主要的。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验