Willits Michael G, Giovanni Maïté, Prata Rogerio T N, Kramer Catherine M, De Luca Vincenzo, Steffens John C, Graser Gerson
Syngenta Biotechnology, Inc., 3054 Cornwallis Road, Research Triangle Park, NC 27709, USA.
Phytochemistry. 2004 Jan;65(1):31-41. doi: 10.1016/j.phytochem.2003.10.005.
A bio-fermentation technique was used for the in vivo diversification of flavonoid structures based on expression in Escherichia coli of six O-methyltransferases (OMTs) from Mentha x piperita and one O-glucosyltransferase (GT) each from Arabidopsis thaliana and Allium cepa. Enzymes were shown to be regio-specific in in vitro experiments and modified a broad range of flavonoid substrates at various positions. Using the flavonol quercetin as a model substrate, we show that the product spectrum produced with the in vivo approach is identical to that found in vitro. Additionally, using mixed cultures of E. coli expressing different classes of modifying genes (OMTs and GTs), the production of polymethylated flavonoid glucosides was observed. This report demonstrates the potential to increase the structural diversity of plant secondary metabolites using a multi-enzyme, bio-fermentation approach.
一种生物发酵技术被用于基于薄荷(Mentha x piperita)的六种O-甲基转移酶(OMT)以及拟南芥(Arabidopsis thaliana)和洋葱(Allium cepa)各一种O-葡萄糖基转移酶(GT)在大肠杆菌中的表达,实现黄酮类化合物结构的体内多样化。在体外实验中,这些酶显示出区域特异性,并能在不同位置修饰多种黄酮类底物。以黄酮醇槲皮素作为模型底物,我们表明体内方法产生的产物谱与体外发现的相同。此外,使用表达不同类别修饰基因(OMT和GT)的大肠杆菌混合培养物,观察到了多甲基化黄酮类葡萄糖苷的产生。本报告证明了使用多酶生物发酵方法增加植物次生代谢产物结构多样性的潜力。