Donnelly Sandra
Division of Nephrology, St. Michael's Hospital, Toronto, Ontario, Canada.
Adv Exp Med Biol. 2003;543:73-87. doi: 10.1007/978-1-4419-8997-0_6.
The normal hematocrit is not a random number, but one that maximizes oxygen delivery. While the feedback loop wherein tissue oxygen pressure determines the production of erythropoietin, which further drives the production of red blood cells in the bone marrow, explains how the hematocrit is generated, it does not speak to how the hematocrit is regulated. The regulation of the hematocrit requires the coordination of the plasma volume and the red cell mass. By controlling red cell mass via erythropoietin and plasma volume through excretion of salt and water, the kidney is able to generate the hematocrit. It is hypothesized that the kidney functions as a critmeter by sensing the relative volumes of each component of the blood through the common signal of tissue oxygen tension. The kidney's unique ability to sense ECF volume through tissue oxygen signal allows it to coordinate these two volumes to produce the normal hematocrit. Hence, it may be the kidneys ability to report a measure of ECF volume as a tissue oxygen signal and thus to regulate the hematocrit that establishes it as the logical site of erythropoietin production. The critmeter is proposed to be a functional unit located at the tip of the cortical labyrinth at the juxta-medullary region of the kidney where erythropoietin is made physiologically. Renal vasculature and nephron segment heterogeneity in sodium reabsorption likely provides the anatomical construct to generate the marginal tissue oxygen pressure required to trigger the production of erythropoietin. The balance of oxygen consumption for sodium reabsorption and oxygen delivery is reflected by the tissue oxygen pressure. This balance hence determines RBC mass adjusted to plasma volume. Factors that affect blood supply and sodium reabsorption in a discordant manner may modulate the critmeter, e.g. angiotensin II. The objective of this work is to describe the hypothesis of the kidney's function as a critmeter, including the anatomical and physiological components, and the role of the renin-angiotensin system in modulating erythropoietin. Clinical examples of the dysregulation of the critmeter may be found in the anemia of renal failure and in sports anemia.
正常血细胞比容并非一个随机数字,而是使氧气输送最大化的数值。虽然组织氧分压决定促红细胞生成素的产生,进而驱动骨髓中红细胞生成的反馈回路解释了血细胞比容是如何产生的,但它并未说明血细胞比容是如何被调节的。血细胞比容的调节需要血浆容量和红细胞量的协调。通过促红细胞生成素控制红细胞量,并通过盐和水的排泄控制血浆容量,肾脏能够生成血细胞比容。据推测,肾脏通过组织氧张力这一共同信号感知血液各成分的相对体积,从而起到血细胞比容计的作用。肾脏通过组织氧信号感知细胞外液容量的独特能力,使其能够协调这两个容量以产生正常的血细胞比容。因此,可能正是肾脏将细胞外液容量的测量值作为组织氧信号进行报告并由此调节血细胞比容的能力,使其成为促红细胞生成素产生的合理部位。血细胞比容计被认为是一个位于肾脏近髓质区域皮质迷路尖端的功能单位,在该部位促红细胞生成素在生理状态下产生。肾血管系统和肾单位节段在钠重吸收方面的异质性可能提供了解剖结构,以产生触发促红细胞生成素产生所需的边缘组织氧分压。钠重吸收所消耗的氧气与氧气输送之间的平衡由组织氧分压反映。这种平衡因此决定了根据血浆容量调整的红细胞量。以不一致方式影响血液供应和钠重吸收的因素可能会调节血细胞比容计,例如血管紧张素II。这项工作的目的是描述肾脏作为血细胞比容计的功能假说,包括解剖和生理组成部分,以及肾素 - 血管紧张素系统在调节促红细胞生成素方面的作用。血细胞比容计调节异常的临床实例可见于肾衰竭贫血和运动性贫血。